Source code for ignite.contrib.metrics.regression.median_absolute_error
import torch
from ignite.contrib.metrics.regression._base import _BaseRegressionEpoch
def median_absolute_error_compute_fn(y_pred, y):
e = torch.abs(y.view_as(y_pred) - y_pred)
return torch.median(e).item()
[docs]class MedianAbsoluteError(_BaseRegressionEpoch):
r"""
Calculates the Median Absolute Error:
:math:`\text{MdAE} = \text{MD}_{j=1,n} \left( |A_j - P_j| \right)`,
where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
More details can be found in `Botchkarev 2018`__.
- `update` must receive output of the form `(y_pred, y)` or `{'y_pred': y_pred, 'y': y}`.
- `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)` and of type `float32`.
.. warning::
Current implementation stores all input data (output and target) in as tensors before computing a metric.
This can potentially lead to a memory error if the input data is larger than available RAM.
__ https://arxiv.org/abs/1809.03006
"""
def __init__(self, output_transform=lambda x: x):
super(MedianAbsoluteError, self).__init__(median_absolute_error_compute_fn, output_transform)