Shortcuts

Source code for ignite.contrib.metrics.gpu_info

# -*- coding: utf-8 -*-
import warnings

import torch

from ignite.metrics import Metric
from ignite.engine import Events


[docs]class GpuInfo(Metric): """Provides GPU information: a) used memory percentage, b) gpu utilization percentage values as Metric on each iterations. Examples: .. code-block:: python # Default GPU measurements GpuInfo().attach(trainer, name='gpu') # metric names are 'gpu:X mem(%)', 'gpu:X util(%)' # Logging with TQDM ProgressBar(persist=True).attach(trainer, metric_names=['gpu:0 mem(%)', 'gpu:0 util(%)']) # Progress bar will looks like # Epoch [2/10]: [12/24] 50%|█████ , gpu:0 mem(%)=79, gpu:0 util(%)=59 [00:17<1:23] # Logging with Tensorboard tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names='all'), event_name=Events.ITERATION_COMPLETED) """ def __init__(self): try: import pynvml except ImportError: raise RuntimeError("This contrib module requires pynvml to be installed. " "Please install it with command: \n pip install pynvml") # Let's check available devices if not torch.cuda.is_available(): raise RuntimeError("This contrib module requires available GPU") from pynvml.smi import nvidia_smi # Let it fail if no libnvidia drivers or NMVL library found self.nvsmi = nvidia_smi.getInstance() super(GpuInfo, self).__init__()
[docs] def reset(self): pass
[docs] def update(self, output): pass
[docs] def compute(self): data = self.nvsmi.DeviceQuery('memory.used, memory.total, utilization.gpu') if len(data) == 0 or ('gpu' not in data): warnings.warn("No GPU information available") return [] return data['gpu']
def completed(self, engine, name): data = self.compute() if len(data) < 1: warnings.warn("No GPU information available") return for i, data_by_rank in enumerate(data): mem_name = "{}:{} mem(%)".format(name, i) if 'fb_memory_usage' not in data_by_rank: warnings.warn("No GPU memory usage information available in {}".format(data_by_rank)) continue mem_report = data_by_rank['fb_memory_usage'] if not ('used' in mem_report and 'total' in mem_report): warnings.warn("GPU memory usage information does not provide used/total " "memory consumption information in {}".format(mem_report)) continue engine.state.metrics[mem_name] = int(mem_report['used'] * 100.0 / mem_report['total']) for i, data_by_rank in enumerate(data): util_name = "{}:{} util(%)".format(name, i) if 'utilization' not in data_by_rank: warnings.warn("No GPU utilization information available in {}".format(data_by_rank)) continue util_report = data_by_rank['utilization'] if not ('gpu_util' in util_report): warnings.warn("GPU utilization information does not provide 'gpu_util' information in " "{}".format(util_report)) continue engine.state.metrics[util_name] = int(util_report['gpu_util']) def attach(self, engine, name="gpu", event_name=Events.ITERATION_COMPLETED): engine.add_event_handler(event_name, self.completed, name)

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 12/09/2024, 2:06:05 PM.

Built with Sphinx using a theme provided by Read the Docs.