Source code for functorch._src.partitioners
import torch
import torch.fx as fx
import operator
import math
import torch.utils._pytree as pytree
import copy
import os
from collections import defaultdict
from torch.fx.passes import graph_drawer
from typing import Tuple
from .compile_utils import fx_graph_cse, get_aten_target
from . import config
AOT_PARTITIONER_DEBUG = config.debug_partitioner
class InvalidNodeBase(object):
def __repr__(self):
return "Invalid Node"
InvalidNode = InvalidNodeBase()
def _extract_graph_with_inputs_outputs(joint_graph, inputs, outputs):
"""
Given a graph, extracts out a subgraph that takes the specified nodes as
inputs and returns the specified outputs.
This includes specifying non-placeholder nodes as inputs.
The general strategy is to initialize all inputs with proxies as we
encounter them, and trace through the graph, only keeping values which take
in valid proxies. Then, all dead code is eliminated.
"""
new_graph = fx.Graph()
env = {}
# Add new placeholder nodes in the order specified by the inputs
for node in inputs:
new_node = new_graph.placeholder(node.name)
# Can't use node_copy here as we may be turning previous call_function into placeholders
new_node.meta = node.meta
env[node] = new_node
for node in joint_graph.nodes:
if node in inputs:
continue
elif node.op == 'placeholder':
env[node] = InvalidNode
elif node.op == 'call_function':
all_args = pytree.tree_flatten((node.args, node.kwargs))[0]
all_args = [isinstance(env[x], InvalidNodeBase) for x in all_args if isinstance(x, fx.Node)]
if any(all_args):
env[node] = InvalidNode
continue
env[node] = new_graph.node_copy(node, lambda x: env[x])
elif node.op == 'get_attr':
env[node] = new_graph.node_copy(node, lambda x: env[x])
elif node.op == 'output':
pass
output_values = []
for x in outputs:
if isinstance(x, fx.Node):
if x not in env:
raise RuntimeError(f"Node {x} couldn't be found in env")
output_values.append(env[x])
else:
output_values.append(x)
new_graph.output(output_values)
new_graph.eliminate_dead_code()
new_graph.lint()
return new_graph
def _is_primal(node):
return node.op == "placeholder" and "tangents" not in node.target
def _is_tangent(node):
return node.op == "placeholder" and "tangents" in node.target
def _extract_fwd_bwd_outputs(joint_module: fx.GraphModule):
num_fwd_outputs = joint_module._out_spec.children_specs[0].num_leaves
outputs = pytree.tree_flatten([node.args for node in joint_module.graph.nodes if node.op == 'output'])[0]
fwd_outputs = outputs[:num_fwd_outputs]
bwd_outputs = outputs[num_fwd_outputs:]
return fwd_outputs, bwd_outputs
def _extract_fwd_bwd_modules(joint_module: fx.GraphModule, saved_values):
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(joint_module)
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
tangent_inputs = list(filter(_is_tangent, joint_module.graph.nodes))
# Construct the forward module
fwd_graph = _extract_graph_with_inputs_outputs(joint_module.graph, primal_inputs, fwd_outputs + saved_values)
bwd_graph = _extract_graph_with_inputs_outputs(joint_module.graph, saved_values + tangent_inputs, bwd_outputs)
# This is to filter out saved values that don't actually end up being used by the backwards pass
for node in bwd_graph.nodes:
if node.op == 'placeholder' and not node.users:
for saved_value in saved_values:
if saved_value.name == node.name:
saved_values.remove(saved_value)
break
# Now, we re-generate the fwd/bwd graphs.
# NB: This might increase compilation time, but I doubt it matters
fwd_graph = _extract_graph_with_inputs_outputs(joint_module.graph, primal_inputs, fwd_outputs + saved_values)
bwd_graph = _extract_graph_with_inputs_outputs(joint_module.graph, saved_values + tangent_inputs, bwd_outputs)
fwd_module = fx.GraphModule(joint_module, fwd_graph)
bwd_module = fx.GraphModule(joint_module, bwd_graph)
return fwd_module, bwd_module
[docs]def default_partition(
joint_module: fx.GraphModule, _joint_inputs
) -> Tuple[fx.GraphModule, fx.GraphModule]:
"""
Partitions the :attr:`joint_module` in a manner that closely resembles the
behavior observed in the original ``.forward()`` and ``.backward()`` of the
callable, i.e., the resulting forward graph contains those operators that
are executed in the original ``.forward()`` callable passed to
:func:`aot_function`.
The default partitioner collects the operators that are between the forward
inputs and the forward outputs. This helps in finding the tensors which have
to be stashed for the backward pass. These stashed tensors become the output
of the generated forward graph. The remaining operators are then placed in
the backward graph.
.. warning::
This API is experimental and likely to change.
Args:
joint_module(fx.GraphModule): The joint forward and backward graph. This
is the result of AOT Autograd tracing.
Returns:
Returns the generated forward and backward Fx graph modules.
"""
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(joint_module)
forward_only_graph = _extract_graph_with_inputs_outputs(joint_module.graph, primal_inputs, fwd_outputs)
forward_node_names = {node.name for node in forward_only_graph.nodes if node.op != 'output'}
saved_values = []
for node in joint_module.graph.nodes:
if node.name not in forward_node_names:
continue
# Since we can't save tuple of tensor values, we need to flatten out what we're saving
if 'tensor_meta' not in node.meta and node.op == 'call_function':
users = node.users
assert all(user.target == operator.getitem for user in users)
for user in users:
saved_values.append(user)
else:
saved_values.append(node)
saved_values = list(set(saved_values))
return _extract_fwd_bwd_modules(joint_module, saved_values)
def _prod(x):
s = 1
for i in x:
s *= i
return s
def _size_of(metadata):
sizes = {
torch.float: 4,
torch.float16: 2,
torch.bfloat16: 2,
torch.float32: 4,
torch.float64: 8,
torch.int: 4,
torch.int8: 1,
torch.int16: 2,
torch.int32: 4,
torch.int64: 8,
torch.uint8: 1,
torch.bool: 1,
}
numel = _prod(metadata.shape)
dtype = metadata.dtype
if dtype not in sizes:
raise NotImplementedError("Don't know the size of dtype ", dtype)
return numel * sizes[dtype]
# Used for some investigative purposes
def _count_ops(graph):
from collections import defaultdict
cnt = defaultdict(int)
for node in graph.nodes:
if node.op == 'call_function':
cnt[node.target.__name__] += 1
print(sorted(cnt.items(), key=lambda x: x[1], reverse=True))
[docs]def min_cut_rematerialization_partition(
joint_module: fx.GraphModule, _joint_inputs, compiler="nvfuser"
) -> Tuple[fx.GraphModule, fx.GraphModule]:
"""
Partitions the joint graph such that the backward recomputes the forward.
Recomputing helps in trading off memory bandwidth with computation.
To create the fwd and bwd graph, we copy the joint graph, manually set the
outputs to just original forward or backward outputs. And then we run the
resulting graphs through dead code elimintation.
.. warning::
This API is experimental and likely to change.
Args:
joint_module(fx.GraphModule): The joint forward and backward graph. This
is the result of AOT Autograd tracing.
Returns:
Returns the generated forward and backward Fx graph modules.
"""
try:
import networkx as nx
except ImportError:
raise RuntimeError("Need networkx installed to perform smart recomputation heuristics")
joint_module.graph.eliminate_dead_code()
joint_module.recompile()
fx_g = joint_module.graph
# add the CSE pass
cse_graph = fx_graph_cse(fx_g)
joint_module.graph = cse_graph
full_bw_graph = joint_module.graph
name_to_node = {}
for node in joint_module.graph.nodes:
name_to_node[node.name] = node
def classify_nodes(joint_module):
required_bw_nodes = set()
for node in joint_module.graph.nodes:
if node.op == 'placeholder' and "tangents" in node.target:
required_bw_nodes.add(node)
if node in required_bw_nodes:
for user in node.users:
required_bw_nodes.add(user)
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
fwd_outputs, _ = _extract_fwd_bwd_outputs(joint_module)
forward_only_graph = _extract_graph_with_inputs_outputs(joint_module.graph, primal_inputs, fwd_outputs)
required_fw_nodes = {name_to_node[node.name] for node in forward_only_graph.nodes
if node.op != 'output'}
unclaimed_nodes = {node for node in joint_module.graph.nodes
if node not in required_fw_nodes and node not in required_bw_nodes}
return required_fw_nodes, required_bw_nodes, unclaimed_nodes
required_fw_nodes, required_bw_nodes, unclaimed_nodes = classify_nodes(joint_module)
for node in reversed(joint_module.graph.nodes):
if node not in required_fw_nodes:
node.dist_from_bw = 0
else:
node.dist_from_bw = int(1e9)
for user in node.users:
node.dist_from_bw = min(node.dist_from_bw, user.dist_from_bw + 1)
aten = torch.ops.aten
prims = torch.ops.prims
recomputable_ops = [aten.add, aten.sub, aten.div, aten.atan2, aten.mul, aten.max, aten.min, aten.pow, aten.remainder, aten.fmod, aten.__and__, aten.__or__, aten.__xor__, aten.__lshift__, aten.__rshift__, aten.eq, aten.ne, aten.ge, aten.gt, aten.le, aten.lt, aten.abs, aten.bitwise_not, aten.ceil, aten.floor, aten.frac, aten.neg, aten.relu, aten.round, aten.silu, aten.trunc, aten.log, aten.log10, aten.log1p, aten.log2, aten.lgamma, aten.exp, aten.expm1, aten.erf, aten.erfc, aten.cos, aten.acos, aten.cosh, aten.sin, aten.asin, aten.sinh, aten.tan, aten.atan, aten.tanh, aten.atanh, aten.sqrt, aten.rsqrt, aten.reciprocal, aten.sigmoid, aten.softplus, aten.threshold, aten.threshold_backward, aten.clamp, aten.where, aten.lerp, aten.addcmul, aten.gelu, aten.gelu_backward, aten.alias, aten.softmax, aten._softmax, aten._softmax_backward_data, aten.sum, aten.mean, aten._grad_sum_to_size, aten.sum_to_size, aten.amax, aten.to, aten.type_as, operator.getitem, aten.squeeze, aten.unsqueeze] # noqa: E501
if compiler == "inductor":
recomputable_ops += [prims.div, prims.convert_element_type, aten.sign, aten.clone, aten._to_copy, aten.full_like, prims.var, prims.sum, aten.var, aten.std, prims.broadcast_in_dim, aten.select, aten.permute, aten._unsafe_view, aten.view, aten.expand, aten.slice, aten.reshape, aten.broadcast_tensors, aten.scalar_tensor, aten.ones, aten.new_zeros, aten.lift_fresh_copy, aten.minimum, aten.arange, aten.bitwise_and, aten.triu, aten.var_mean, aten.isinf, aten.any, aten.isnan, aten.full, aten.as_strided, aten.zeros, aten.argmax, aten.maximum, aten.bitwise_or, aten.logical_and, aten.logical_or] # noqa: E501
# Natalia said that we should allow recomputing indexing :)
recomputable_ops += [aten.index]
recomputable_ops = set(recomputable_ops)
random_ops = [aten.native_dropout, aten.rand_like, aten.randn_like]
compute_intensive_ops = [aten.mm, aten.convolution, aten.convolution_backward, aten.bmm, aten.addmm, aten.upsample_bilinear2d] # noqa: E501
unrecomputable_ops = random_ops + compute_intensive_ops
fusible_ops = recomputable_ops | set(random_ops)
if AOT_PARTITIONER_DEBUG:
joint_module_ops = set(
str(node.target._overloadpacket)
for node in joint_module.graph.nodes
if node.op == "call_function" and hasattr(node.target, "_overloadpacket")
)
ops_ignored = joint_module_ops - set([str(i) for i in recomputable_ops])
print("Ops banned from rematerialization: ", ops_ignored)
print()
AGGRESSIVE_RECOMPUTATION = False
def _maybe_size_of(node):
if 'tensor_meta' in node.meta:
return _size_of(node.meta['tensor_meta'])
return 0
def ban_recomputation(node):
if AGGRESSIVE_RECOMPUTATION:
return (node.op == 'call_function' and get_aten_target(node) in unrecomputable_ops)
else:
if node.op != 'call_function':
return False
if get_aten_target(node) not in recomputable_ops:
return True
if node.target == operator.getitem:
return False
if compiler == "inductor" and node.dist_from_bw > 4:
return True
# If the output of an op is 4x smaller (arbitrary choice),
# then we don't allow recomputation.
if 'tensor_meta' not in node.meta:
return False
input_tensors_size = sum(_maybe_size_of(i) for i in node.args if isinstance(i, fx.Node))
output_size = _size_of(node.meta['tensor_meta'])
return (output_size * 4 < input_tensors_size)
def is_fusible(a, b):
return get_aten_target(a) in fusible_ops and get_aten_target(b) in fusible_ops
def is_materialized(node):
if node.op == 'placeholder':
return True
return not all(is_fusible(node, user) for user in node.users)
def get_node_weight(node):
mem_sz = _size_of(node.meta['tensor_meta'])
# Heuristic to bias towards nodes closer to the backwards pass
# Complete guess about current value
mem_sz = int(mem_sz * (1.1 ** max(min(node.dist_from_bw, 100), 1)))
# mem_sz = int(mem_sz + node.dist_from_bw)
if is_materialized(node):
return mem_sz
else:
return mem_sz * 2
nx_graph = nx.DiGraph()
for node in full_bw_graph.nodes:
if node.op == 'output':
continue
if node in required_bw_nodes:
nx_graph.add_edge(node.name + "_in", "sink", capacity=math.inf)
continue
if node.op == 'placeholder' and "primals" in node.target:
nx_graph.add_edge("source", node.name + "_in", capacity=math.inf)
# If a node can't be recomputed (too expensive or involves randomness),
# we prevent it from being recomputed by adding an inf edge to the source
# We only need to ban nodes in the fw pass, as those are the only ones that would be recomputed.
if ban_recomputation(node) and node in required_fw_nodes:
nx_graph.add_edge("source", node.name + "_in", capacity=math.inf)
if 'tensor_meta' not in node.meta:
weight = math.inf
else:
weight = get_node_weight(node)
# Creates the weights on the "node" edge
nx_graph.add_edge(node.name + "_in", node.name + "_out", capacity=weight)
for user in node.users:
nx_graph.add_edge(node.name + "_out", user.name + "_in", capacity=math.inf)
cut_value, partition = nx.minimum_cut(nx_graph, "source", "sink")
reachable, non_reachable = partition
cutset = set()
for u, nbrs in ((n, nx_graph[n]) for n in reachable):
cutset.update((u, v) for v in nbrs if v in non_reachable)
cut_nodes = set()
for node_in, node_out in cutset:
assert node_in[:-3] == node_out[:-4]
node_name = node_in[:-3]
cut_nodes.add(node_name)
# To make this stuff deterministic
node_idx = {node: idx for idx, node in enumerate(joint_module.graph.nodes)}
saved_values = sorted((name_to_node[node] for node in cut_nodes), key=lambda x: node_idx[x])
fw_module, bw_module = _extract_fwd_bwd_modules(joint_module, saved_values)
if AOT_PARTITIONER_DEBUG:
print("Theoretical Activations Stored: ", sum([_size_of(i.meta['tensor_meta']) for i in saved_values]) / 1e9)
fw_module_nodes = set([node.name for node in fw_module.graph.nodes if node.op == 'call_function'])
bw_module_nodes = set([node.name for node in bw_module.graph.nodes if node.op == 'call_function'])
remat_nodes = fw_module_nodes & bw_module_nodes
counts = defaultdict(int)
for node in fw_module.graph.nodes:
if node.name in remat_nodes and hasattr(node.target, '_overloadpacket'):
counts[str(node.target._overloadpacket)] += 1
print("# nodes rematerialized: ", len(remat_nodes))
print("Count of Ops Rematerialized: ", sorted(counts.items(), key=lambda x: x[1], reverse=True))
return fw_module, bw_module
def draw_graph(traced: torch.fx.GraphModule, fname: str, figname: str = "fx_graph", clear_meta=True):
if clear_meta:
new_graph = copy.deepcopy(traced.graph)
traced = fx.GraphModule(traced, new_graph)
for node in traced.graph.nodes:
node.meta = {}
base, ext = os.path.splitext(fname)
if not ext:
ext = ".svg"
print(f"Writing FX graph to file: {base}{ext}")
g = graph_drawer.FxGraphDrawer(traced, figname)
x = g.get_main_dot_graph()
getattr(x, "write_" + ext.lstrip("."))(f"{base}{ext}")
def draw_joint_graph(graph, joint_inputs, file_name="full_graph.png"):
draw_graph(graph, file_name)
return default_partition(graph, joint_inputs)