Shortcuts

Source code for functorch._src.make_functional

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
from torch import Tensor
from typing import List, Tuple
from .named_members_polyfill import _named_parameters, _named_buffers
import copy

# Utilities to make nn.Module "functional"
# In particular the goal is to be able to provide a function that takes as input
# the parameters and evaluate the nn.Module using fixed inputs.


def _del_nested_attr(obj: nn.Module, names: List[str]) -> None:
    """
    Deletes the attribute specified by the given list of names.
    For example, to delete the attribute obj.conv.weight,
    use _del_nested_attr(obj, ['conv', 'weight'])
    """
    if len(names) == 1:
        delattr(obj, names[0])
    else:
        _del_nested_attr(getattr(obj, names[0]), names[1:])


def _set_nested_attr(obj: nn.Module, names: List[str], value: Tensor) -> None:
    """
    Set the attribute specified by the given list of names to value.
    For example, to set the attribute obj.conv.weight,
    use _del_nested_attr(obj, ['conv', 'weight'], value)
    """
    if len(names) == 1:
        setattr(obj, names[0], value)
    else:
        _set_nested_attr(getattr(obj, names[0]), names[1:], value)


def _get_nested_attr(obj: nn.Module, names: List[str]) -> None:
    if len(names) == 1:
        return getattr(obj, names[0])
    else:
        _get_nested_attr(getattr(obj, names[0]), names[1:])


def raise_parameter_tying_error():
    raise RuntimeError(
        "make_functional(module): we don't yet support models that "
        "do parameter tying (also sometimes known as weight sharing). "
        "Please try to rewrite your model by replacing all instances of the "
        "tied parameter with another and/or comment your support in "
        "https://github.com/pytorch/functorch/issues/446")


def create_names_map(named_params, tied_named_params):
    """
    named_params is a dictionary of tensors: {'A': A, 'B': B}
    tied_named_params is another dictionary of tensors {'A': A, 'B': B, 'B_tied': B}
    with potentially tied (or 'duplicated') tensors

    This function creates a mapping from the names in named_params to the
    names in tied_named_params: {'A': ['A'], 'B': ['B', 'B_tied']}.
    """
    named_params = {k: v for k, v in named_params}
    tied_named_params = {k: v for k, v in tied_named_params}

    tensors_dict_keys = set(named_params.keys())
    tied_tensors_dict_keys = set(tied_named_params.keys())
    assert tensors_dict_keys.issubset(tied_tensors_dict_keys)

    tensor_to_mapping = {}
    for key, tensor in named_params.items():
        tensor_to_mapping[tensor] = (key, [])
    for key, tensor in tied_named_params.items():
        assert tensor in tensor_to_mapping
        tensor_to_mapping[tensor][1].append(key.split('.'))
    result = {key: value for key, value in tensor_to_mapping.values()}
    return result


def _extract_members(mod: nn.Module, _named_members, named_members, subclass):
    all_named_members = tuple(_named_members(mod, remove_duplicate=False))
    named_members = tuple(named_members())
    names_map = create_names_map(named_members, all_named_members)

    # Remove all the members in the model
    memo = {}
    for name, p in all_named_members:
        if p not in memo:
            memo[p] = subclass(torch.empty_like(p, device='meta'))
        replacement = memo[p]
        _set_nested_attr(mod, name.split("."), replacement)

    if len(named_members) == 0:
        names, params = (), ()
    else:
        names, params = zip(*named_members)
    return params, names, names_map


def extract_weights(mod: nn.Module):
    """
    This function removes all the Parameters from the model and
    return them as a tuple as well as their original attribute names.
    The weights must be re-loaded with `load_weights` before the model
    can be used again.
    Note that this function modifies the model in place and after this
    call, mod.parameters() will be empty.
    """
    return _extract_members(mod, _named_parameters, mod.named_parameters, nn.Parameter)


def extract_buffers(mod: nn.Module):
    return _extract_members(mod, _named_buffers, mod.named_buffers, lambda x: x)


def load_weights(mod: nn.Module, names: List[str], params: Tuple[Tensor, ...], as_params=False) -> None:
    """
    Reload a set of weights so that `mod` can be used again to perform a forward pass.
    Note that the `params` are regular Tensors (that can have history) and so are left
    as Tensors. This means that mod.parameters() will still be empty after this call.
    """
    for name, p in zip(names, params):
        if as_params:
            p = nn.Parameter(p)
        _del_nested_attr(mod, name.split("."))
        _set_nested_attr(mod, name.split("."), p)


def _swap_state(mod: nn.Module, names_map: List[str], elems):
    result = []
    for (_, attr_names), elem in zip(names_map.items(), elems):
        for i, attr_name in enumerate(attr_names):
            if i == 0:
                result.append(_get_nested_attr(mod, attr_name))
            _del_nested_attr(mod, attr_name)
            _set_nested_attr(mod, attr_name, elem)
    return result


def load_buffers(mod: nn.Module, names: List[str], buffers: Tuple[Tensor, ...], as_params=False) -> None:
    for name, p in zip(names, buffers):
        _set_nested_attr(mod, name.split("."), p)


def load_state(
        model: nn.Module,
        weights: List[Tensor], weight_names: List[str],
        buffers=(), buffer_names=()):
    """load_state(model, weights, weight_names, buffers=(), buffer_names=()) -> model

    load_state takes `weights` and `buffers` and assigns them to the model.
    This is the inverse operation of `make_functional_deprecated_v1`.
    """
    assert len(weight_names) == len(weights)
    load_weights(model, weight_names, weights)
    if len(buffers) > 0:
        assert len(buffer_names) == len(buffers)
        load_buffers(model, buffer_names, buffers)
    return model


def make_functional_deprecated_v1(model: nn.Module):
    """make_functional_deprecated_v1(model) -> weights, func, weight_names

    Given an nn.Module, make_functional_deprecated_v1 extracts the state (weights)
    and returns a functional version of the model, `func`. This makes
    it so that it is possible use transforms over the parameters of
    `model`.

    `func` can be invoked as follows:
    ```
    x = torch.randn(4, 3)
    model = nn.Linear(3, 3)
    weights, func, _ = make_functional_deprecated_v1(model)
    func(weights, (x,))
    ```

    And here is an example of applying the grad transform:
    ```
    x = torch.randn(4, 3)
    model = nn.Linear(3, 3)
    weights, _, func = make_functional_deprecated_v1(model)
    grad_weights = grad(func)(weights, (x,))
    ```

    To put the state back into a model, use `load_state`.
    """
    buffers = list(model.buffers())
    if len(buffers) > 0:
        raise RuntimeError('make_functional_deprecated_v1(model): `model` has buffers. Please use '
                           'make_functional_with_buffers_deprecated_v1(model) instead.')
    weights, descriptors, _ = extract_weights(model)

    def fun(weights, data):
        mutable_model = copy.deepcopy(model)
        load_weights(mutable_model, descriptors, weights)
        return mutable_model(*data)

    return weights, fun, descriptors


def make_functional_with_buffers_deprecated_v1(model: nn.Module):
    """make_functional_with_buffers_deprecated_v1(model) -> weights, buffers, func, weight_names, buffer_names

    Given an nn.Module, make_functional_with_buffers_deprecated_v1 extracts the state (weights and buffers)
    and returns a functional version of the model, `func`.

    `func` can be invoked as follows:
    ```
    x = torch.randn(4, 3)
    model = nn.Linear(3, 3)
    weights, buffers, func, _, _ = make_functional_with_buffers_deprecated_v1(model)
    func(weights, buffers, (x,))
    ```

    And here is an example of applying the grad transform:
    ```
    x = torch.randn(4, 3)
    model = nn.Linear(3, 3)
    weights, buffers, func, _, _ = make_functional_with_buffers_deprecated_v1(model)
    func(weights, buffers, (x,))
    grad_weights = grad(func)(weights, buffers, (x,))
    ```

    To put the state back into a model, use `load_state`.
    """
    weights, weight_descriptors, _ = extract_weights(model)
    buffers, buf_descriptors, _ = extract_buffers(model)

    def fun(weights, buffers, data):
        mutable_model = copy.deepcopy(model)
        load_weights(mutable_model, weight_descriptors, weights)
        load_buffers(mutable_model, buf_descriptors, buffers)
        return mutable_model(*data)

    return weights, buffers, fun, weight_descriptors, buf_descriptors


class FunctionalModuleWithBuffers(nn.Module):
    """
    This is the callable object returned by :func:`make_functional_with_buffers`.
    """

    def __init__(self, stateless_model, param_names, buffer_names,
                 param_names_map, buffer_names_map):
        super(FunctionalModuleWithBuffers, self).__init__()
        self.stateless_model = stateless_model
        self.param_names = param_names
        self.buffer_names = buffer_names

        self.all_names_map = dict(param_names_map)
        self.all_names_map.update(buffer_names_map)

    @staticmethod
    def _create_from(model, disable_autograd_tracking=False):
        # TODO: We don't need to copy the model to create a stateless copy
        model_copy = copy.deepcopy(model)
        params, param_names, param_names_map = extract_weights(model_copy)
        buffers, buffer_names, buffer_names_map = extract_buffers(model_copy)
        if disable_autograd_tracking:
            for param in params:
                param.requires_grad_(False)
        return (
            FunctionalModuleWithBuffers(model_copy, param_names, buffer_names,
                                        param_names_map, buffer_names_map),
            params,
            buffers,
        )

    def forward(self, params, buffers, *args, **kwargs):
        # Temporarily load the state back onto self.stateless_model
        old_state = _swap_state(
            self.stateless_model,
            self.all_names_map,
            list(params) + list(buffers))
        try:
            return self.stateless_model(*args, **kwargs)
        finally:
            # Remove the loaded state on self.stateless_model
            _swap_state(self.stateless_model, self.all_names_map, old_state)


class FunctionalModule(nn.Module):
    """
    This is the callable object returned by :func:`make_functional`.
    """

    def __init__(self, stateless_model, param_names, names_map):
        super(FunctionalModule, self).__init__()
        self.stateless_model = stateless_model
        self.param_names = param_names
        self.names_map = names_map

    @staticmethod
    def _create_from(model, disable_autograd_tracking=False):
        # TODO: We don't need to copy the model to create a stateless copy
        model_copy = copy.deepcopy(model)
        params, param_names, names_map = extract_weights(model_copy)
        if disable_autograd_tracking:
            for param in params:
                param.requires_grad_(False)
        return FunctionalModule(model_copy, param_names, names_map), params

    def forward(self, params, *args, **kwargs):
        # Temporarily load the state back onto self.stateless_model
        old_state = _swap_state(self.stateless_model, self.names_map, params)
        try:
            return self.stateless_model(*args, **kwargs)
        finally:
            # Remove the loaded state on self.stateless_model
            _swap_state(self.stateless_model, self.names_map, old_state)


[docs]def make_functional(model: nn.Module, disable_autograd_tracking: bool = False): """make_functional(model, disable_autograd_tracking=False) -> func, params Given a ``torch.nn.Module``, :func:`make_functional` extracts the state (params) and returns a functional version of the model, ``func``. This makes it so that it is possible use transforms over the parameters of ``model``. ``func`` can be invoked as follows: .. code-block:: python import torch import torch.nn as nn from functorch import make_functional x = torch.randn(4, 3) model = nn.Linear(3, 3) func, params = make_functional(model) func(params, x) And here is an example of applying the grad transform over the parameters of a model. .. code-block:: python import torch import torch.nn as nn from functorch import make_functional, grad x = torch.randn(4, 3) t = torch.randn(4, 3) model = nn.Linear(3, 3) func, params = make_functional(model) def compute_loss(params, x, t): y = func(params, x) return nn.functional.mse_loss(y, t) grad_weights = grad(compute_loss)(params, x, t) If the model has any buffers, please use :func:`make_functional_with_buffers` instead. Args: model (torch.nn.Module): Input model. disable_autograd_tracking (bool): Flag to disable gradients tracking for output parameters. The returned params are unrelated to the set of params from the original model. If False (default), the params will have ``requires_grad=True`` on them (aka they will be trackable with regular PyTorch autograd), matching the requires_grad-ness of the params from the original model. Otherwise, the returned params will have ``requires_grad=False``. Default, False. If you plan on using regular PyTorch autograd (e.g., if you want to call ``.backward()`` or ``torch.autograd.grad()``, then set ``disable_autograd_tracking=False``. Otherwise, if you're only planning on using functorch's gradient transforms, then please set ``disable_autograd_tracking=True`` to avoid unnecessarily tracking history with PyTorch autograd. """ buffers = list(model.buffers()) if len(buffers) > 0: raise RuntimeError('make_functional(model): `model` has buffers. Please use ' 'make_functional_with_buffers(model) instead.') return FunctionalModule._create_from(model, disable_autograd_tracking=disable_autograd_tracking)
[docs]def make_functional_with_buffers(model: nn.Module, disable_autograd_tracking: bool = False): """make_functional_with_buffers(model, disable_autograd_tracking=False) -> func, params, buffers Given a ``torch.nn.Module``, make_functional_with_buffers extracts the state (params and buffers) and returns a functional version of the model ``func`` that can be invoked like a function. ``func`` can be invoked as follows: .. code-block:: python import torch import torch.nn as nn from functorch import make_functional_with_buffers x = torch.randn(4, 3) model = nn.Linear(3, 3) func, params, buffers = make_functional_with_buffers(model) func(params, buffers, x) And here is an example of applying the grad transform over the parameters of a model: .. code-block:: python import torch import torch.nn as nn from functorch import make_functional_with_buffers, grad x = torch.randn(4, 3) t = torch.randn(4, 3) model = nn.Linear(3, 3) func, params, buffers = make_functional_with_buffers(model) def compute_loss(params, buffers, x, t): y = func(params, buffers, x) return nn.functional.mse_loss(y, t) grad_weights = grad(compute_loss)(params, buffers, x, t) Args: model (torch.nn.Module): Input model. disable_autograd_tracking (bool): Flag to disable gradients tracking for output parameters. The returned params are unrelated to the set of params from the original model. If False (default), the params will have ``requires_grad=True`` on them (aka they will be trackable with regular PyTorch autograd), matching the requires_grad-ness of the params from the original model. Otherwise, the returned params will have ``requires_grad=False``. Default, False. If you plan on using regular PyTorch autograd (e.g., if you want to call ``.backward()`` or ``torch.autograd.grad()``, then set ``disable_autograd_tracking=False``. Otherwise, if you're only planning on using functorch's gradient transforms, then please set ``disable_autograd_tracking=True`` to avoid unnecessarily tracking history with PyTorch autograd. """ return FunctionalModuleWithBuffers._create_from(model, disable_autograd_tracking=disable_autograd_tracking)
def transpose_stack(tuple_of_tuple_of_tensors): tuple_of_tuple_of_tensors = tuple(zip(*tuple_of_tuple_of_tensors)) results = tuple(torch.stack(shards).detach() for shards in tuple_of_tuple_of_tensors) return results
[docs]def combine_state_for_ensemble(models): """combine_state_for_ensemble(models) -> func, params, buffers Prepares a list of torch.nn.Modules for ensembling with :func:`vmap`. Given a list of ``M`` ``nn.Modules`` of the same class, stacks all of their parameters and buffers together to make ``params`` and ``buffers``. Each parameter and buffer in the result will have an additional dimension of size ``M``. :func:`combine_state_for_ensemble` also returns ``func``, a functional version of one of the models in :attr:`models`. One cannot directly run ``func(params, buffers, *args, **kwargs)`` directly, you probably want to use ``vmap(func, ...)(params, buffers, *args, **kwargs)`` Here's an example of how to ensemble over a very simple model: .. code-block:: python num_models = 5 batch_size = 64 in_features, out_features = 3, 3 models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)] data = torch.randn(batch_size, 3) fmodel, params, buffers = combine_state_for_ensemble(models) output = vmap(fmodel, (0, 0, None))(params, buffers, data) assert output.shape == (num_models, batch_size, out_features) .. warning:: All of the modules being stacked together must be the same (except for the values of their parameters/buffers). For example, they should be in the same mode (training vs eval). This API is subject to change -- we're investigating better ways to create ensembles and would love your feedback how to improve this. """ if len(models) == 0: raise RuntimeError('combine_state_for_ensemble: Expected at least one model, got 0.') if not (all(m.training for m in models) or all(not m.training for m in models)): raise RuntimeError('combine_state_for_ensemble: Expected all models to ' 'have the same training/eval mode.') model0_typ = type(models[0]) if not all(type(m) == model0_typ for m in models): raise RuntimeError('combine_state_for_ensemble: Expected all models to ' 'be of the same class.') funcs, params, buffers = zip(*[make_functional_with_buffers(model) for model in models]) params = transpose_stack(params) buffers = transpose_stack(buffers) return funcs[0], params, buffers
def functional_init(model_class, ensemble_shape=(), device='cpu'): def wrapped(*args, **kwargs): if len(ensemble_shape) >= 2: raise ValueError('NYI: ensemble_shape with more than 1 element') if len(ensemble_shape) == 0: model = model_class(*args, **kwargs).to(device) return make_functional_deprecated_v1(model) num_models = ensemble_shape[0] if num_models <= 0: raise ValueError(f"num_models {num_models} should be > 0") # NB: Not very efficient, more of a POC models = tuple(model_class(*args, **kwargs).to(device) for _ in range(num_models)) _, fn, names = make_functional_deprecated_v1(model_class(*args, **kwargs)) weights = tuple(make_functional_deprecated_v1(model)[0] for model in models) weights = tuple(zip(*weights)) weights = tuple(torch.stack(shards).detach() for shards in weights) return weights, fn, names return wrapped def functional_init_with_buffers(model_class, ensemble_shape=(), device='cpu'): def wrapped(*args, **kwargs): if len(ensemble_shape) >= 2: raise ValueError('NYI: ensemble_shape with more than 1 element') if len(ensemble_shape) == 0: model = model_class(*args, **kwargs).to(device) return make_functional_deprecated_v1(model) num_models = ensemble_shape[0] if num_models <= 0: raise ValueError(f"num_models {num_models} should be > 0") # NB: Not very efficient, more of a POC models = tuple(model_class(*args, **kwargs).to(device) for _ in range(num_models)) _, _, fn, weight_names, buffer_names = \ make_functional_with_buffers_deprecated_v1(model_class(*args, **kwargs)) weights, buffers = zip(*tuple(make_functional_with_buffers_deprecated_v1(model)[:2] for model in models)) weights = tuple(zip(*weights)) weights = tuple(torch.stack(shards).detach() for shards in weights) buffers = tuple(zip(*buffers)) buffers = tuple(torch.stack(shards).detach() for shards in buffers) return weights, buffers, fn, weight_names, buffer_names return wrapped

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources