Source code for torch.testing._creation

This module contains tensor creation utilities.

import math
import warnings
from typing import cast, List, Optional, Tuple, Union

import torch

_INTEGRAL_TYPES = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
_FLOATING_TYPES = [torch.float16, torch.bfloat16, torch.float32, torch.float64]
_COMPLEX_TYPES = [torch.complex32, torch.complex64, torch.complex128]

def _uniform_random_(t: torch.Tensor, low: float, high: float) -> torch.Tensor:
    # uniform_ requires to-from <= std::numeric_limits<scalar_t>::max()
    # Work around this by scaling the range before and after the PRNG
    if high - low >= torch.finfo(t.dtype).max:
        return t.uniform_(low / 2, high / 2).mul_(2)
        return t.uniform_(low, high)

[docs]def make_tensor( *shape: Union[int, torch.Size, List[int], Tuple[int, ...]], dtype: torch.dtype, device: Union[str, torch.device], low: Optional[float] = None, high: Optional[float] = None, requires_grad: bool = False, noncontiguous: bool = False, exclude_zero: bool = False, memory_format: Optional[torch.memory_format] = None, ) -> torch.Tensor: r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with values uniformly drawn from ``[low, high)``. If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable finite values then they are clamped to the lowest or highest representable finite value, respectively. If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`, which depend on :attr:`dtype`. +---------------------------+------------+----------+ | ``dtype`` | ``low`` | ``high`` | +===========================+============+==========+ | boolean type | ``0`` | ``2`` | +---------------------------+------------+----------+ | unsigned integral type | ``0`` | ``10`` | +---------------------------+------------+----------+ | signed integral types | ``-9`` | ``10`` | +---------------------------+------------+----------+ | floating types | ``-9`` | ``9`` | +---------------------------+------------+----------+ | complex types | ``-9`` | ``9`` | +---------------------------+------------+----------+ Args: shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor. dtype (:class:`torch.dtype`): The data type of the returned tensor. device (Union[str, torch.device]): The device of the returned tensor. low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is clamped to the least representable finite value of the given dtype. When ``None`` (default), this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``. high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``. .. deprecated:: 2.1 Passing ``low==high`` to :func:`~torch.testing.make_tensor` for floating or complex types is deprecated since 2.1 and will be removed in 2.3. Use :func:`torch.full` instead. requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``. noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is ignored if the constructed tensor has fewer than two elements. Mutually exclusive with ``memory_format``. exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the :attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number whose real and imaginary parts are both the smallest positive normal number representable by the complex type. Default ``False``. memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Mutually exclusive with ``noncontiguous``. Raises: ValueError: If ``requires_grad=True`` is passed for integral `dtype` ValueError: If ``low >= high``. ValueError: If either :attr:`low` or :attr:`high` is ``nan``. ValueError: If both :attr:`noncontiguous` and :attr:`memory_format` are passed. TypeError: If :attr:`dtype` isn't supported by this function. Examples: >>> # xdoctest: +SKIP >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) >>> from torch.testing import make_tensor >>> # Creates a float tensor with values in [-1, 1) >>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1) >>> # xdoctest: +SKIP tensor([ 0.1205, 0.2282, -0.6380]) >>> # Creates a bool tensor on CUDA >>> make_tensor((2, 2), device='cuda', dtype=torch.bool) tensor([[False, False], [False, True]], device='cuda:0') """ def modify_low_high( low: Optional[float], high: Optional[float], *, lowest_inclusive: float, highest_exclusive: float, default_low: float, default_high: float, ) -> Tuple[float, float]: """ Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high) if required. """ def clamp(a: float, l: float, h: float) -> float: return min(max(a, l), h) low = low if low is not None else default_low high = high if high is not None else default_high if any(isinstance(value, float) and math.isnan(value) for value in [low, high]): raise ValueError( f"`low` and `high` cannot be NaN, but got {low=} and {high=}" ) elif low == high and dtype in _FLOATING_OR_COMPLEX_TYPES: warnings.warn( "Passing `low==high` to `torch.testing.make_tensor` for floating or complex types " "is deprecated since 2.1 and will be removed in 2.3. " "Use torch.full(...) instead.", FutureWarning, ) elif low >= high: raise ValueError(f"`low` must be less than `high`, but got {low} >= {high}") elif high < lowest_inclusive or low >= highest_exclusive: raise ValueError( f"The value interval specified by `low` and `high` is [{low}, {high}), " f"but {dtype} only supports [{lowest_inclusive}, {highest_exclusive})" ) low = clamp(low, lowest_inclusive, highest_exclusive) high = clamp(high, lowest_inclusive, highest_exclusive) if dtype in _BOOLEAN_OR_INTEGRAL_TYPES: # 1. `low` is ceiled to avoid creating values smaller than `low` and thus outside the specified interval # 2. Following the same reasoning as for 1., `high` should be floored. However, the higher bound of # `torch.randint` is exclusive, and thus we need to ceil here as well. return math.ceil(low), math.ceil(high) return low, high if len(shape) == 1 and isinstance(shape[0], shape = shape[0] # type: ignore[assignment] shape = cast(Tuple[int, ...], tuple(shape)) if noncontiguous and memory_format is not None: raise ValueError( f"The parameters `noncontiguous` and `memory_format` are mutually exclusive, " f"but got {noncontiguous=} and {memory_format=}" ) if requires_grad and dtype in _BOOLEAN_OR_INTEGRAL_TYPES: raise ValueError( f"`requires_grad=True` is not supported for boolean and integral dtypes, but got {dtype=}" ) if dtype is torch.bool: low, high = cast( Tuple[int, int], modify_low_high( low, high, lowest_inclusive=0, highest_exclusive=2, default_low=0, default_high=2, ), ) result = torch.randint(low, high, shape, device=device, dtype=dtype) elif dtype in _BOOLEAN_OR_INTEGRAL_TYPES: low, high = cast( Tuple[int, int], modify_low_high( low, high, lowest_inclusive=torch.iinfo(dtype).min, highest_exclusive=torch.iinfo(dtype).max # In theory, `highest_exclusive` should always be the maximum value + 1. However, `torch.randint` # internally converts the bounds to an int64 and would overflow. In other words: `torch.randint` cannot # sample 2**63 - 1, i.e. the maximum value of `torch.int64` and we need to account for that here. + (1 if dtype is not torch.int64 else 0), # This is incorrect for `torch.uint8`, but since we clamp to `lowest`, i.e. 0 for `torch.uint8`, # _after_ we use the default value, we don't need to special case it here default_low=-9, default_high=10, ), ) result = torch.randint(low, high, shape, device=device, dtype=dtype) elif dtype in _FLOATING_OR_COMPLEX_TYPES: low, high = modify_low_high( low, high, lowest_inclusive=torch.finfo(dtype).min, highest_exclusive=torch.finfo(dtype).max, default_low=-9, default_high=9, ) result = torch.empty(shape, device=device, dtype=dtype) _uniform_random_( torch.view_as_real(result) if dtype in _COMPLEX_TYPES else result, low, high ) else: raise TypeError( f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()." " To request support, file an issue at:" ) if noncontiguous and result.numel() > 1: result = torch.repeat_interleave(result, 2, dim=-1) result = result[..., ::2] elif memory_format is not None: result = result.clone(memory_format=memory_format) if exclude_zero: result[result == 0] = ( 1 if dtype in _BOOLEAN_OR_INTEGRAL_TYPES else torch.finfo(dtype).tiny ) if dtype in _FLOATING_OR_COMPLEX_TYPES: result.requires_grad = requires_grad return result


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources