Shortcuts

Source code for torch.ao.nn.intrinsic.quantized.modules.conv_relu


import torch
import torch.ao.nn.intrinsic
import torch.ao.nn.intrinsic.qat
import torch.nn.functional as F
import torch.ao.nn.quantized as nnq

from torch.nn.utils import fuse_conv_bn_weights

__all__ = [
    "ConvReLU1d",
    "ConvReLU2d",
    "ConvReLU3d",
]

_reverse_repeat_padding = nnq.modules.conv._reverse_repeat_padding

# TODO: factor out the common parts to ConvNd
[docs]class ConvReLU1d(nnq.Conv1d): r""" A ConvReLU1d module is a fused module of Conv1d and ReLU We adopt the same interface as :class:`torch.ao.nn.quantized.Conv1d`. Attributes: Same as torch.ao.nn.quantized.Conv1d """ _FLOAT_MODULE = torch.ao.nn.intrinsic.ConvReLU1d # type: ignore[assignment] def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): super().__init__( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode, device=device, dtype=dtype) def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 3: raise ValueError("Input shape must be `(N, C, L)`!") if self.padding_mode != 'zeros': # Padding in Conv1d is stored as (p, p), need to get (p,) _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1]) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return torch.ops.quantized.conv1d_relu( input, self._packed_params, self.scale, self.zero_point) def _get_name(self): return 'QuantizedConvReLU1d' @classmethod def from_float(cls, mod): if type(mod) == torch.ao.nn.intrinsic.qat.ConvBnReLU1d: mod.weight, mod.bias = fuse_conv_bn_weights( mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var, mod.bn.eps, mod.bn.weight, mod.bn.bias) return super().from_float(mod) @classmethod def from_reference(cls, ref_qconv, output_scale, output_zero_point): assert type(ref_qconv) != torch.ao.nn.intrinsic.ConvBnReLU1d, \ "BatchNorm1d should be fused into Conv1d before converting to reference module" return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
[docs]class ConvReLU2d(nnq.Conv2d): r""" A ConvReLU2d module is a fused module of Conv2d and ReLU We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`. Attributes: Same as torch.ao.nn.quantized.Conv2d """ _FLOAT_MODULE = torch.ao.nn.intrinsic.ConvReLU2d # type: ignore[assignment] def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): super().__init__( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode, device=device, dtype=dtype) def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") if self.padding_mode != 'zeros': _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return torch.ops.quantized.conv2d_relu( input, self._packed_params, self.scale, self.zero_point) def _get_name(self): return 'QuantizedConvReLU2d' @classmethod def from_float(cls, mod): if type(mod) == torch.ao.nn.intrinsic.qat.ConvBnReLU2d: mod.weight, mod.bias = fuse_conv_bn_weights( mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var, mod.bn.eps, mod.bn.weight, mod.bn.bias) return super().from_float(mod) @classmethod def from_reference(cls, ref_qconv, output_scale, output_zero_point): assert type(ref_qconv) != torch.ao.nn.intrinsic.ConvBnReLU2d, \ "BatchNorm2d should be fused into Conv2d before converting to reference module" return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
[docs]class ConvReLU3d(nnq.Conv3d): r""" A ConvReLU3d module is a fused module of Conv3d and ReLU We adopt the same interface as :class:`torch.ao.nn.quantized.Conv3d`. Attributes: Same as torch.ao.nn.quantized.Conv3d """ _FLOAT_MODULE = torch.ao.nn.intrinsic.ConvReLU3d # type: ignore[assignment] def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None): assert padding_mode != 'reflect', "Conv3d does not support reflection padding" super().__init__( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode=padding_mode, device=device, dtype=dtype) def forward(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, D, H, W)`!") if self.padding_mode != 'zeros': _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding) input = F.pad(input, _reversed_padding_repeated_twice, mode=self.padding_mode) return torch.ops.quantized.conv3d_relu( input, self._packed_params, self.scale, self.zero_point) def _get_name(self): return 'QuantizedConvReLU3d' @classmethod def from_float(cls, mod): if type(mod) == torch.ao.nn.intrinsic.qat.ConvBnReLU3d: mod.weight, mod.bias = fuse_conv_bn_weights( mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var, mod.bn.eps, mod.bn.weight, mod.bn.bias, ) return super().from_float(mod) @classmethod def from_reference(cls, ref_qconv, output_scale, output_zero_point): assert type(ref_qconv) != torch.ao.nn.intrinsic.ConvBnReLU3d, \ "BatchNorm3d should be fused into Conv3d before converting to reference module" return super().from_reference(ref_qconv[0], output_scale, output_zero_point)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources