torch.nn¶
Parameters¶
-
class
torch.nn.
Parameter
[source]¶ A kind of Tensor that is to be considered a module parameter.
Parameters are
Tensor
subclasses, that have a very special property when used withModule
s - when they’re assigned as Module attributes they are automatically added to the list of its parameters, and will appear e.g. inparameters()
iterator. Assigning a Tensor doesn’t have such effect. This is because one might want to cache some temporary state, like last hidden state of the RNN, in the model. If there was no such class asParameter
, these temporaries would get registered too.- Parameters
data (Tensor) – parameter tensor.
requires_grad (bool, optional) – if the parameter requires gradient. See Excluding subgraphs from backward for more details. Default: True
Containers¶
Module¶
-
class
torch.nn.
Module
[source]¶ Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.-
add_module
(name, module)[source]¶ Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (string) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
-
apply
(fn)[source]¶ Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).- Parameters
fn (
Module
-> None) – function to be applied to each submodule- Returns
self
- Return type
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
-
bfloat16
()[source]¶ Casts all floating point parameters and buffers to
bfloat16
datatype.- Returns
self
- Return type
-
buffers
(recurse=True)[source]¶ Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
Example:
>>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
-
children
()[source]¶ Returns an iterator over immediate children modules.
- Yields
Module – a child module
-
cuda
(device=None)[source]¶ Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
-
double
()[source]¶ Casts all floating point parameters and buffers to
double
datatype.- Returns
self
- Return type
-
dump_patches
= False¶ This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
-
eval
()[source]¶ Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.- Returns
self
- Return type
-
extra_repr
()[source]¶ Set the extra representation of the module
To print customized extra information, you should reimplement this method in your own modules. Both single-line and multi-line strings are acceptable.
-
float
()[source]¶ Casts all floating point parameters and buffers to float datatype.
- Returns
self
- Return type
-
forward
(*input)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
half
()[source]¶ Casts all floating point parameters and buffers to
half
datatype.- Returns
self
- Return type
-
load_state_dict
(state_dict, strict=True)[source]¶ Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type
NamedTuple
withmissing_keys
andunexpected_keys
fields
-
modules
()[source]¶ Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
-
named_buffers
(prefix='', recurse=True)[source]¶ Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
- Yields
(string, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
-
named_children
()[source]¶ Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple containing a name and child module
Example:
>>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
-
named_modules
(memo=None, prefix='')[source]¶ Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
-
named_parameters
(prefix='', recurse=True)[source]¶ Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
- Yields
(string, Parameter) – Tuple containing the name and parameter
Example:
>>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
-
parameters
(recurse=True)[source]¶ Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
Example:
>>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
-
register_backward_hook
(hook)[source]¶ Registers a backward hook on the module.
The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> Tensor or None
The
grad_input
andgrad_output
may be tuples if the module has multiple inputs or outputs. The hook should not modify its arguments, but it can optionally return a new gradient with respect to input that will be used in place ofgrad_input
in subsequent computations.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
Warning
The current implementation will not have the presented behavior for complex
Module
that perform many operations. In some failure cases,grad_input
andgrad_output
will only contain the gradients for a subset of the inputs and outputs. For suchModule
, you should usetorch.Tensor.register_hook()
directly on a specific input or output to get the required gradients.
-
register_buffer
(name, tensor)[source]¶ Adds a persistent buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the persistent state.Buffers can be accessed as attributes using given names.
- Parameters
name (string) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor) – buffer to be registered.
Example:
>>> self.register_buffer('running_mean', torch.zeros(num_features))
-
register_forward_hook
(hook)[source]¶ Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after
forward()
is called.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
-
register_forward_pre_hook
(hook)[source]¶ Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).
- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
-
register_parameter
(name, param)[source]¶ Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (string) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter) – parameter to be added to the module.
-
requires_grad_
(requires_grad=True)[source]¶ Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
-
state_dict
(destination=None, prefix='', keep_vars=False)[source]¶ Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names.
- Returns
a dictionary containing a whole state of the module
- Return type
Example:
>>> module.state_dict().keys() ['bias', 'weight']
-
to
(*args, **kwargs)[source]¶ Moves and/or casts the parameters and buffers.
This can be called as
-
to
(device=None, dtype=None, non_blocking=False)[source]
-
to
(dtype, non_blocking=False)[source]
-
to
(tensor, non_blocking=False)[source]
-
to
(memory_format=torch.channels_last)[source]
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point desireddtype
s. In addition, this method will only cast the floating point parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point type of the floating point parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns
self
- Return type
Example:
>>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16)
-
-
train
(mode=True)[source]¶ Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.
-
Sequential¶
-
class
torch.nn.
Sequential
(*args)[source]¶ A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ordered dict of modules can also be passed in.
To make it easier to understand, here is a small example:
# Example of using Sequential model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU() ) # Example of using Sequential with OrderedDict model = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(1,20,5)), ('relu1', nn.ReLU()), ('conv2', nn.Conv2d(20,64,5)), ('relu2', nn.ReLU()) ]))
ModuleList¶
-
class
torch.nn.
ModuleList
(modules=None)[source]¶ Holds submodules in a list.
ModuleList
can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by allModule
methods.- Parameters
modules (iterable, optional) – an iterable of modules to add
Example:
class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) def forward(self, x): # ModuleList can act as an iterable, or be indexed using ints for i, l in enumerate(self.linears): x = self.linears[i // 2](x) + l(x) return x
-
append
(module)[source]¶ Appends a given module to the end of the list.
- Parameters
module (nn.Module) – module to append
ModuleDict¶
-
class
torch.nn.
ModuleDict
(modules=None)[source]¶ Holds submodules in a dictionary.
ModuleDict
can be indexed like a regular Python dictionary, but modules it contains are properly registered, and will be visible by allModule
methods.ModuleDict
is an ordered dictionary that respectsthe order of insertion, and
in
update()
, the order of the mergedOrderedDict
or anotherModuleDict
(the argument toupdate()
).
Note that
update()
with other unordered mapping types (e.g., Python’s plaindict
) does not preserve the order of the merged mapping.- Parameters
modules (iterable, optional) – a mapping (dictionary) of (string: module) or an iterable of key-value pairs of type (string, module)
Example:
class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.choices = nn.ModuleDict({ 'conv': nn.Conv2d(10, 10, 3), 'pool': nn.MaxPool2d(3) }) self.activations = nn.ModuleDict([ ['lrelu', nn.LeakyReLU()], ['prelu', nn.PReLU()] ]) def forward(self, x, choice, act): x = self.choices[choice](x) x = self.activations[act](x) return x
-
pop
(key)[source]¶ Remove key from the ModuleDict and return its module.
- Parameters
key (string) – key to pop from the ModuleDict
-
update
(modules)[source]¶ Update the
ModuleDict
with the key-value pairs from a mapping or an iterable, overwriting existing keys.Note
If
modules
is anOrderedDict
, aModuleDict
, or an iterable of key-value pairs, the order of new elements in it is preserved.
ParameterList¶
-
class
torch.nn.
ParameterList
(parameters=None)[source]¶ Holds parameters in a list.
ParameterList
can be indexed like a regular Python list, but parameters it contains are properly registered, and will be visible by allModule
methods.- Parameters
parameters (iterable, optional) – an iterable of
Parameter
to add
Example:
class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)]) def forward(self, x): # ParameterList can act as an iterable, or be indexed using ints for i, p in enumerate(self.params): x = self.params[i // 2].mm(x) + p.mm(x) return x
-
append
(parameter)[source]¶ Appends a given parameter at the end of the list.
- Parameters
parameter (nn.Parameter) – parameter to append
ParameterDict¶
-
class
torch.nn.
ParameterDict
(parameters=None)[source]¶ Holds parameters in a dictionary.
ParameterDict can be indexed like a regular Python dictionary, but parameters it contains are properly registered, and will be visible by all Module methods.
ParameterDict
is an ordered dictionary that respectsthe order of insertion, and
in
update()
, the order of the mergedOrderedDict
or anotherParameterDict
(the argument toupdate()
).
Note that
update()
with other unordered mapping types (e.g., Python’s plaindict
) does not preserve the order of the merged mapping.- Parameters
parameters (iterable, optional) – a mapping (dictionary) of (string :
Parameter
) or an iterable of key-value pairs of type (string,Parameter
)
Example:
class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.params = nn.ParameterDict({ 'left': nn.Parameter(torch.randn(5, 10)), 'right': nn.Parameter(torch.randn(5, 10)) }) def forward(self, x, choice): x = self.params[choice].mm(x) return x
-
pop
(key)[source]¶ Remove key from the ParameterDict and return its parameter.
- Parameters
key (string) – key to pop from the ParameterDict
-
update
(parameters)[source]¶ Update the
ParameterDict
with the key-value pairs from a mapping or an iterable, overwriting existing keys.Note
If
parameters
is anOrderedDict
, aParameterDict
, or an iterable of key-value pairs, the order of new elements in it is preserved.
Convolution layers¶
Conv1d¶
-
class
torch.nn.
Conv1d
(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')[source]¶ Applies a 1D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size and output can be precisely described as:
where is the valid cross-correlation operator, is a batch size, denotes a number of channels, is a length of signal sequence.
stride
controls the stride for the cross-correlation, a single number or a one-element tuple.padding
controls the amount of implicit zero-paddings on both sides forpadding
number of points.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters, of size .
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution.
In other words, for an input of size , a depthwise convolution with a depthwise multiplier K, can be constructed by arguments .
Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
padding_mode (string, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
- Shape:
Input:
Output: where
- Variables
Examples:
>>> m = nn.Conv1d(16, 33, 3, stride=2) >>> input = torch.randn(20, 16, 50) >>> output = m(input)
Conv2d¶
-
class
torch.nn.
Conv2d
(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')[source]¶ Applies a 2D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size and output can be precisely described as:
where is the valid 2D cross-correlation operator, is a batch size, denotes a number of channels, is a height of input planes in pixels, and is width in pixels.
stride
controls the stride for the cross-correlation, a single number or a tuple.padding
controls the amount of implicit zero-paddings on both sides forpadding
number of points for each dimension.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters, of size: .
The parameters
kernel_size
,stride
,padding
,dilation
can either be:a single
int
– in which case the same value is used for the height and width dimensiona
tuple
of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution.
In other words, for an input of size , a depthwise convolution with a depthwise multiplier K, can be constructed by arguments .
Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
padding_mode (string, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
- Shape:
Input:
Output: where
- Variables
Examples:
>>> # With square kernels and equal stride >>> m = nn.Conv2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> # non-square kernels and unequal stride and with padding and dilation >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) >>> input = torch.randn(20, 16, 50, 100) >>> output = m(input)
Conv3d¶
-
class
torch.nn.
Conv3d
(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')[source]¶ Applies a 3D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size and output can be precisely described as:
where is the valid 3D cross-correlation operator
stride
controls the stride for the cross-correlation.padding
controls the amount of implicit zero-paddings on both sides forpadding
number of points for each dimension.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters, of size .
The parameters
kernel_size
,stride
,padding
,dilation
can either be:a single
int
– in which case the same value is used for the depth, height and width dimensiona
tuple
of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution.
In other words, for an input of size , a depthwise convolution with a depthwise multiplier K, can be constructed by arguments .
Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) – Zero-padding added to all three sides of the input. Default: 0
padding_mode (string, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
- Shape:
Input:
Output: where
- Variables
Examples:
>>> # With square kernels and equal stride >>> m = nn.Conv3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) >>> input = torch.randn(20, 16, 10, 50, 100) >>> output = m(input)
ConvTranspose1d¶
-
class
torch.nn.
ConvTranspose1d
(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros')[source]¶ Applies a 1D transposed convolution operator over an input image composed of several input planes.
This module can be seen as the gradient of Conv1d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).
stride
controls the stride for the cross-correlation.padding
controls the amount of implicit zero-paddings on both sides fordilation * (kernel_size - 1) - padding
number of points. See note below for details.output_padding
controls the additional size added to one side of the output shape. See note below for details.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters (of size ).
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
The
padding
argument effectively addsdilation * (kernel_size - 1) - padding
amount of zero padding to both sizes of the input. This is set so that when aConv1d
and aConvTranspose1d
are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, whenstride > 1
,Conv1d
maps multiple input shapes to the same output shape.output_padding
is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note thatoutput_padding
is only used to find output shape, but does not actually add zero-padding to output.Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) –
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of the input. Default: 0output_padding (int or tuple, optional) – Additional size added to one side of the output shape. Default: 0
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
- Shape:
Input:
Output: where
- Variables
ConvTranspose2d¶
-
class
torch.nn.
ConvTranspose2d
(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros')[source]¶ Applies a 2D transposed convolution operator over an input image composed of several input planes.
This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).
stride
controls the stride for the cross-correlation.padding
controls the amount of implicit zero-paddings on both sides fordilation * (kernel_size - 1) - padding
number of points. See note below for details.output_padding
controls the additional size added to one side of the output shape. See note below for details.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters (of size ).
The parameters
kernel_size
,stride
,padding
,output_padding
can either be:a single
int
– in which case the same value is used for the height and width dimensionsa
tuple
of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
The
padding
argument effectively addsdilation * (kernel_size - 1) - padding
amount of zero padding to both sizes of the input. This is set so that when aConv2d
and aConvTranspose2d
are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, whenstride > 1
,Conv2d
maps multiple input shapes to the same output shape.output_padding
is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note thatoutput_padding
is only used to find output shape, but does not actually add zero-padding to output.Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) –
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Default: 0output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
- Shape:
Input:
Output: where
- Variables
Examples:
>>> # With square kernels and equal stride >>> m = nn.ConvTranspose2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = torch.randn(20, 16, 50, 100) >>> output = m(input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12, 12) >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12])
ConvTranspose3d¶
-
class
torch.nn.
ConvTranspose3d
(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros')[source]¶ Applies a 3D transposed convolution operator over an input image composed of several input planes. The transposed convolution operator multiplies each input value element-wise by a learnable kernel, and sums over the outputs from all input feature planes.
This module can be seen as the gradient of Conv3d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).
stride
controls the stride for the cross-correlation.padding
controls the amount of implicit zero-paddings on both sides fordilation * (kernel_size - 1) - padding
number of points. See note below for details.output_padding
controls the additional size added to one side of the output shape. See note below for details.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters (of size ).
The parameters
kernel_size
,stride
,padding
,output_padding
can either be:a single
int
– in which case the same value is used for the depth, height and width dimensionsa
tuple
of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
The
padding
argument effectively addsdilation * (kernel_size - 1) - padding
amount of zero padding to both sizes of the input. This is set so that when aConv3d
and aConvTranspose3d
are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, whenstride > 1
,Conv3d
maps multiple input shapes to the same output shape.output_padding
is provided to resolve this ambiguity by effectively increasing the calculated output shape on one side. Note thatoutput_padding
is only used to find output shape, but does not actually add zero-padding to output.Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) –
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Default: 0output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
- Shape:
Input:
Output: where
- Variables
Examples:
>>> # With square kernels and equal stride >>> m = nn.ConvTranspose3d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2)) >>> input = torch.randn(20, 16, 10, 50, 100) >>> output = m(input)
Unfold¶
-
class
torch.nn.
Unfold
(kernel_size, dilation=1, padding=0, stride=1)[source]¶ Extracts sliding local blocks from a batched input tensor.
Consider a batched
input
tensor of shape , where is the batch dimension, is the channel dimension, and represent arbitrary spatial dimensions. This operation flattens each slidingkernel_size
-sized block within the spatial dimensions ofinput
into a column (i.e., last dimension) of a 3-Doutput
tensor of shape , where is the total number of values within each block (a block has spatial locations each containing a -channeled vector), and is the total number of such blocks:where is formed by the spatial dimensions of
input
( above), and is over all spatial dimensions.Therefore, indexing
output
at the last dimension (column dimension) gives all values within a certain block.The
padding
,stride
anddilation
arguments specify how the sliding blocks are retrieved.stride
controls the stride for the sliding blocks.padding
controls the amount of implicit zero-paddings on both sides forpadding
number of points for each dimension before reshaping.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.
- Parameters
stride (int or tuple, optional) – the stride of the sliding blocks in the input spatial dimensions. Default: 1
padding (int or tuple, optional) – implicit zero padding to be added on both sides of input. Default: 0
dilation (int or tuple, optional) – a parameter that controls the stride of elements within the neighborhood. Default: 1
If
kernel_size
,dilation
,padding
orstride
is an int or a tuple of length 1, their values will be replicated across all spatial dimensions.For the case of two input spatial dimensions this operation is sometimes called
im2col
.
Note
Fold
calculates each combined value in the resulting large tensor by summing all values from all containing blocks.Unfold
extracts the values in the local blocks by copying from the large tensor. So, if the blocks overlap, they are not inverses of each other.In general, folding and unfolding operations are related as follows. Consider
Fold
andUnfold
instances created with the same parameters:>>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...) >>> fold = nn.Fold(output_size=..., **fold_params) >>> unfold = nn.Unfold(**fold_params)
Then for any (supported)
input
tensor the following equality holds:fold(unfold(input)) == divisor * input
where
divisor
is a tensor that depends only on the shape and dtype of theinput
:>>> input_ones = torch.ones(input.shape, dtype=input.dtype) >>> divisor = fold(unfold(input_ones))
When the
divisor
tensor contains no zero elements, thenfold
andunfold
operations are inverses of each other (up to constant divisor).Warning
Currently, only 4-D input tensors (batched image-like tensors) are supported.
- Shape:
Input:
Output: as described above
Examples:
>>> unfold = nn.Unfold(kernel_size=(2, 3)) >>> input = torch.randn(2, 5, 3, 4) >>> output = unfold(input) >>> # each patch contains 30 values (2x3=6 vectors, each of 5 channels) >>> # 4 blocks (2x3 kernels) in total in the 3x4 input >>> output.size() torch.Size([2, 30, 4]) >>> # Convolution is equivalent with Unfold + Matrix Multiplication + Fold (or view to output shape) >>> inp = torch.randn(1, 3, 10, 12) >>> w = torch.randn(2, 3, 4, 5) >>> inp_unf = torch.nn.functional.unfold(inp, (4, 5)) >>> out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2) >>> out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1)) >>> # or equivalently (and avoiding a copy), >>> # out = out_unf.view(1, 2, 7, 8) >>> (torch.nn.functional.conv2d(inp, w) - out).abs().max() tensor(1.9073e-06)
Fold¶
-
class
torch.nn.
Fold
(output_size, kernel_size, dilation=1, padding=0, stride=1)[source]¶ Combines an array of sliding local blocks into a large containing tensor.
Consider a batched
input
tensor containing sliding local blocks, e.g., patches of images, of shape , where is batch dimension, is the number of values within a block (a block has spatial locations each containing a -channeled vector), and is the total number of blocks. (This is exactly the same specification as the output shape ofUnfold
.) This operation combines these local blocks into the largeoutput
tensor of shape by summing the overlapping values. Similar toUnfold
, the arguments must satisfywhere is over all spatial dimensions.
output_size
describes the spatial shape of the large containing tensor of the sliding local blocks. It is useful to resolve the ambiguity when multiple input shapes map to same number of sliding blocks, e.g., withstride > 0
.
The
padding
,stride
anddilation
arguments specify how the sliding blocks are retrieved.stride
controls the stride for the sliding blocks.padding
controls the amount of implicit zero-paddings on both sides forpadding
number of points for each dimension before reshaping.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.
- Parameters
output_size (int or tuple) – the shape of the spatial dimensions of the output (i.e.,
output.sizes()[2:]
)stride (int or tuple) – the stride of the sliding blocks in the input spatial dimensions. Default: 1
padding (int or tuple, optional) – implicit zero padding to be added on both sides of input. Default: 0
dilation (int or tuple, optional) – a parameter that controls the stride of elements within the neighborhood. Default: 1
If
output_size
,kernel_size
,dilation
,padding
orstride
is an int or a tuple of length 1 then their values will be replicated across all spatial dimensions.For the case of two output spatial dimensions this operation is sometimes called
col2im
.
Note
Fold
calculates each combined value in the resulting large tensor by summing all values from all containing blocks.Unfold
extracts the values in the local blocks by copying from the large tensor. So, if the blocks overlap, they are not inverses of each other.In general, folding and unfolding operations are related as follows. Consider
Fold
andUnfold
instances created with the same parameters:>>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...) >>> fold = nn.Fold(output_size=..., **fold_params) >>> unfold = nn.Unfold(**fold_params)
Then for any (supported)
input
tensor the following equality holds:fold(unfold(input)) == divisor * input
where
divisor
is a tensor that depends only on the shape and dtype of theinput
:>>> input_ones = torch.ones(input.shape, dtype=input.dtype) >>> divisor = fold(unfold(input_ones))
When the
divisor
tensor contains no zero elements, thenfold
andunfold
operations are inverses of each other (up to constant divisor).Warning
Currently, only 4-D output tensors (batched image-like tensors) are supported.
- Shape:
Input:
Output: as described above
Examples:
>>> fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2)) >>> input = torch.randn(1, 3 * 2 * 2, 12) >>> output = fold(input) >>> output.size() torch.Size([1, 3, 4, 5])
Pooling layers¶
MaxPool1d¶
-
class
torch.nn.
MaxPool1d
(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)[source]¶ Applies a 1D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size and output can be precisely described as:
If
padding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points.dilation
controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of whatdilation
does.- Parameters
kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is
kernel_size
padding – implicit zero padding to be added on both sides
dilation – a parameter that controls the stride of elements in the window
return_indices – if
True
, will return the max indices along with the outputs. Useful fortorch.nn.MaxUnpool1d
laterceil_mode – when True, will use ceil instead of floor to compute the output shape
- Shape:
Input:
Output: , where
Examples:
>>> # pool of size=3, stride=2 >>> m = nn.MaxPool1d(3, stride=2) >>> input = torch.randn(20, 16, 50) >>> output = m(input)
MaxPool2d¶
-
class
torch.nn.
MaxPool2d
(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)[source]¶ Applies a 2D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size , output and
kernel_size
can be precisely described as:If
padding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points.dilation
controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of whatdilation
does.The parameters
kernel_size
,stride
,padding
,dilation
can either be:a single
int
– in which case the same value is used for the height and width dimensiona
tuple
of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
- Parameters
kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is
kernel_size
padding – implicit zero padding to be added on both sides
dilation – a parameter that controls the stride of elements in the window
return_indices – if
True
, will return the max indices along with the outputs. Useful fortorch.nn.MaxUnpool2d
laterceil_mode – when True, will use ceil instead of floor to compute the output shape
- Shape:
Input:
Output: , where
Examples:
>>> # pool of square window of size=3, stride=2 >>> m = nn.MaxPool2d(3, stride=2) >>> # pool of non-square window >>> m = nn.MaxPool2d((3, 2), stride=(2, 1)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
MaxPool3d¶
-
class
torch.nn.
MaxPool3d
(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)[source]¶ Applies a 3D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size , output and
kernel_size
can be precisely described as:If
padding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points.dilation
controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of whatdilation
does.The parameters
kernel_size
,stride
,padding
,dilation
can either be:a single
int
– in which case the same value is used for the depth, height and width dimensiona
tuple
of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
- Parameters
kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is
kernel_size
padding – implicit zero padding to be added on all three sides
dilation – a parameter that controls the stride of elements in the window
return_indices – if
True
, will return the max indices along with the outputs. Useful fortorch.nn.MaxUnpool3d
laterceil_mode – when True, will use ceil instead of floor to compute the output shape
- Shape:
Input:
Output: , where
Examples:
>>> # pool of square window of size=3, stride=2 >>> m = nn.MaxPool3d(3, stride=2) >>> # pool of non-square window >>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2)) >>> input = torch.randn(20, 16, 50,44, 31) >>> output = m(input)
MaxUnpool1d¶
-
class
torch.nn.
MaxUnpool1d
(kernel_size, stride=None, padding=0)[source]¶ Computes a partial inverse of
MaxPool1d
.MaxPool1d
is not fully invertible, since the non-maximal values are lost.MaxUnpool1d
takes in as input the output ofMaxPool1d
including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.Note
MaxPool1d
can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argumentoutput_size
in the forward call. See the Inputs and Example below.- Parameters
- Inputs:
input: the input Tensor to invert
indices: the indices given out by
MaxPool1d
output_size (optional): the targeted output size
- Shape:
Input:
Output: , where
or as given by
output_size
in the call operator
Example:
>>> pool = nn.MaxPool1d(2, stride=2, return_indices=True) >>> unpool = nn.MaxUnpool1d(2, stride=2) >>> input = torch.tensor([[[1., 2, 3, 4, 5, 6, 7, 8]]]) >>> output, indices = pool(input) >>> unpool(output, indices) tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8.]]]) >>> # Example showcasing the use of output_size >>> input = torch.tensor([[[1., 2, 3, 4, 5, 6, 7, 8, 9]]]) >>> output, indices = pool(input) >>> unpool(output, indices, output_size=input.size()) tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8., 0.]]]) >>> unpool(output, indices) tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8.]]])
MaxUnpool2d¶
-
class
torch.nn.
MaxUnpool2d
(kernel_size, stride=None, padding=0)[source]¶ Computes a partial inverse of
MaxPool2d
.MaxPool2d
is not fully invertible, since the non-maximal values are lost.MaxUnpool2d
takes in as input the output ofMaxPool2d
including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.Note
MaxPool2d
can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argumentoutput_size
in the forward call. See the Inputs and Example below.- Parameters
- Inputs:
input: the input Tensor to invert
indices: the indices given out by
MaxPool2d
output_size (optional): the targeted output size
- Shape:
Input:
Output: , where
or as given by
output_size
in the call operator
Example:
>>> pool = nn.MaxPool2d(2, stride=2, return_indices=True) >>> unpool = nn.MaxUnpool2d(2, stride=2) >>> input = torch.tensor([[[[ 1., 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12], [13, 14, 15, 16]]]]) >>> output, indices = pool(input) >>> unpool(output, indices) tensor([[[[ 0., 0., 0., 0.], [ 0., 6., 0., 8.], [ 0., 0., 0., 0.], [ 0., 14., 0., 16.]]]]) >>> # specify a different output size than input size >>> unpool(output, indices, output_size=torch.Size([1, 1, 5, 5])) tensor([[[[ 0., 0., 0., 0., 0.], [ 6., 0., 8., 0., 0.], [ 0., 0., 0., 14., 0.], [ 16., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]]])
MaxUnpool3d¶
-
class
torch.nn.
MaxUnpool3d
(kernel_size, stride=None, padding=0)[source]¶ Computes a partial inverse of
MaxPool3d
.MaxPool3d
is not fully invertible, since the non-maximal values are lost.MaxUnpool3d
takes in as input the output ofMaxPool3d
including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.Note
MaxPool3d
can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argumentoutput_size
in the forward call. See the Inputs section below.- Parameters
- Inputs:
input: the input Tensor to invert
indices: the indices given out by
MaxPool3d
output_size (optional): the targeted output size
- Shape:
Input:
Output: , where
or as given by
output_size
in the call operator
Example:
>>> # pool of square window of size=3, stride=2 >>> pool = nn.MaxPool3d(3, stride=2, return_indices=True) >>> unpool = nn.MaxUnpool3d(3, stride=2) >>> output, indices = pool(torch.randn(20, 16, 51, 33, 15)) >>> unpooled_output = unpool(output, indices) >>> unpooled_output.size() torch.Size([20, 16, 51, 33, 15])
AvgPool1d¶
-
class
torch.nn.
AvgPool1d
(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)[source]¶ Applies a 1D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size , output and
kernel_size
can be precisely described as:If
padding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points.The parameters
kernel_size
,stride
,padding
can each be anint
or a one-element tuple.- Parameters
kernel_size – the size of the window
stride – the stride of the window. Default value is
kernel_size
padding – implicit zero padding to be added on both sides
ceil_mode – when True, will use ceil instead of floor to compute the output shape
count_include_pad – when True, will include the zero-padding in the averaging calculation
- Shape:
Input:
Output: , where
Examples:
>>> # pool with window of size=3, stride=2 >>> m = nn.AvgPool1d(3, stride=2) >>> m(torch.tensor([[[1.,2,3,4,5,6,7]]])) tensor([[[ 2., 4., 6.]]])
AvgPool2d¶
-
class
torch.nn.
AvgPool2d
(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]¶ Applies a 2D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size , output and
kernel_size
can be precisely described as:If
padding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points.The parameters
kernel_size
,stride
,padding
can either be:a single
int
– in which case the same value is used for the height and width dimensiona
tuple
of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
- Parameters
kernel_size – the size of the window
stride – the stride of the window. Default value is
kernel_size
padding – implicit zero padding to be added on both sides
ceil_mode – when True, will use ceil instead of floor to compute the output shape
count_include_pad – when True, will include the zero-padding in the averaging calculation
divisor_override – if specified, it will be used as divisor, otherwise attr:kernel_size will be used
- Shape:
Input:
Output: , where
Examples:
>>> # pool of square window of size=3, stride=2 >>> m = nn.AvgPool2d(3, stride=2) >>> # pool of non-square window >>> m = nn.AvgPool2d((3, 2), stride=(2, 1)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
AvgPool3d¶
-
class
torch.nn.
AvgPool3d
(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]¶ Applies a 3D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size , output and
kernel_size
can be precisely described as:If
padding
is non-zero, then the input is implicitly zero-padded on all three sides forpadding
number of points.The parameters
kernel_size
,stride
can either be:a single
int
– in which case the same value is used for the depth, height and width dimensiona
tuple
of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
- Parameters
kernel_size – the size of the window
stride – the stride of the window. Default value is
kernel_size
padding – implicit zero padding to be added on all three sides
ceil_mode – when True, will use ceil instead of floor to compute the output shape
count_include_pad – when True, will include the zero-padding in the averaging calculation
divisor_override – if specified, it will be used as divisor, otherwise attr:kernel_size will be used
- Shape:
Input:
Output: , where
Examples:
>>> # pool of square window of size=3, stride=2 >>> m = nn.AvgPool3d(3, stride=2) >>> # pool of non-square window >>> m = nn.AvgPool3d((3, 2, 2), stride=(2, 1, 2)) >>> input = torch.randn(20, 16, 50,44, 31) >>> output = m(input)
FractionalMaxPool2d¶
-
class
torch.nn.
FractionalMaxPool2d
(kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)[source]¶ Applies a 2D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper Fractional MaxPooling by Ben Graham
The max-pooling operation is applied in regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.
- Parameters
kernel_size – the size of the window to take a max over. Can be a single number k (for a square kernel of k x k) or a tuple (kh, kw)
output_size – the target output size of the image of the form oH x oW. Can be a tuple (oH, oW) or a single number oH for a square image oH x oH
output_ratio – If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1)
return_indices – if
True
, will return the indices along with the outputs. Useful to pass tonn.MaxUnpool2d()
. Default:False
Examples
>>> # pool of square window of size=3, and target output size 13x12 >>> m = nn.FractionalMaxPool2d(3, output_size=(13, 12)) >>> # pool of square window and target output size being half of input image size >>> m = nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
LPPool1d¶
-
class
torch.nn.
LPPool1d
(norm_type, kernel_size, stride=None, ceil_mode=False)[source]¶ Applies a 1D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
At p = , one gets Max Pooling
At p = 1, one gets Sum Pooling (which is proportional to Average Pooling)
Note
If the sum to the power of p is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.
- Parameters
kernel_size – a single int, the size of the window
stride – a single int, the stride of the window. Default value is
kernel_size
ceil_mode – when True, will use ceil instead of floor to compute the output shape
- Shape:
Input:
Output: , where
- Examples::
>>> # power-2 pool of window of length 3, with stride 2. >>> m = nn.LPPool1d(2, 3, stride=2) >>> input = torch.randn(20, 16, 50) >>> output = m(input)
LPPool2d¶
-
class
torch.nn.
LPPool2d
(norm_type, kernel_size, stride=None, ceil_mode=False)[source]¶ Applies a 2D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
At p = , one gets Max Pooling
At p = 1, one gets Sum Pooling (which is proportional to average pooling)
The parameters
kernel_size
,stride
can either be:a single
int
– in which case the same value is used for the height and width dimensiona
tuple
of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
Note
If the sum to the power of p is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.
- Parameters
kernel_size – the size of the window
stride – the stride of the window. Default value is
kernel_size
ceil_mode – when True, will use ceil instead of floor to compute the output shape
- Shape:
Input:
Output: , where
Examples:
>>> # power-2 pool of square window of size=3, stride=2 >>> m = nn.LPPool2d(2, 3, stride=2) >>> # pool of non-square window of power 1.2 >>> m = nn.LPPool2d(1.2, (3, 2), stride=(2, 1)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
AdaptiveMaxPool1d¶
-
class
torch.nn.
AdaptiveMaxPool1d
(output_size, return_indices=False)[source]¶ Applies a 1D adaptive max pooling over an input signal composed of several input planes.
The output size is H, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size – the target output size H
return_indices – if
True
, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool1d. Default:False
Examples
>>> # target output size of 5 >>> m = nn.AdaptiveMaxPool1d(5) >>> input = torch.randn(1, 64, 8) >>> output = m(input)
AdaptiveMaxPool2d¶
-
class
torch.nn.
AdaptiveMaxPool2d
(output_size, return_indices=False)[source]¶ Applies a 2D adaptive max pooling over an input signal composed of several input planes.
The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a
int
, orNone
which means the size will be the same as that of the input.return_indices – if
True
, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool2d. Default:False
Examples
>>> # target output size of 5x7 >>> m = nn.AdaptiveMaxPool2d((5,7)) >>> input = torch.randn(1, 64, 8, 9) >>> output = m(input) >>> # target output size of 7x7 (square) >>> m = nn.AdaptiveMaxPool2d(7) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input) >>> # target output size of 10x7 >>> m = nn.AdaptiveMaxPool2d((None, 7)) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input)
AdaptiveMaxPool3d¶
-
class
torch.nn.
AdaptiveMaxPool3d
(output_size, return_indices=False)[source]¶ Applies a 3D adaptive max pooling over an input signal composed of several input planes.
The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size – the target output size of the image of the form D x H x W. Can be a tuple (D, H, W) or a single D for a cube D x D x D. D, H and W can be either a
int
, orNone
which means the size will be the same as that of the input.return_indices – if
True
, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool3d. Default:False
Examples
>>> # target output size of 5x7x9 >>> m = nn.AdaptiveMaxPool3d((5,7,9)) >>> input = torch.randn(1, 64, 8, 9, 10) >>> output = m(input) >>> # target output size of 7x7x7 (cube) >>> m = nn.AdaptiveMaxPool3d(7) >>> input = torch.randn(1, 64, 10, 9, 8) >>> output = m(input) >>> # target output size of 7x9x8 >>> m = nn.AdaptiveMaxPool3d((7, None, None)) >>> input = torch.randn(1, 64, 10, 9, 8) >>> output = m(input)
AdaptiveAvgPool1d¶
-
class
torch.nn.
AdaptiveAvgPool1d
(output_size)[source]¶ Applies a 1D adaptive average pooling over an input signal composed of several input planes.
The output size is H, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size – the target output size H
Examples
>>> # target output size of 5 >>> m = nn.AdaptiveAvgPool1d(5) >>> input = torch.randn(1, 64, 8) >>> output = m(input)
AdaptiveAvgPool2d¶
-
class
torch.nn.
AdaptiveAvgPool2d
(output_size)[source]¶ Applies a 2D adaptive average pooling over an input signal composed of several input planes.
The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a
int
, orNone
which means the size will be the same as that of the input.
Examples
>>> # target output size of 5x7 >>> m = nn.AdaptiveAvgPool2d((5,7)) >>> input = torch.randn(1, 64, 8, 9) >>> output = m(input) >>> # target output size of 7x7 (square) >>> m = nn.AdaptiveAvgPool2d(7) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input) >>> # target output size of 10x7 >>> m = nn.AdaptiveMaxPool2d((None, 7)) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input)
AdaptiveAvgPool3d¶
-
class
torch.nn.
AdaptiveAvgPool3d
(output_size)[source]¶ Applies a 3D adaptive average pooling over an input signal composed of several input planes.
The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size – the target output size of the form D x H x W. Can be a tuple (D, H, W) or a single number D for a cube D x D x D. D, H and W can be either a
int
, orNone
which means the size will be the same as that of the input.
Examples
>>> # target output size of 5x7x9 >>> m = nn.AdaptiveAvgPool3d((5,7,9)) >>> input = torch.randn(1, 64, 8, 9, 10) >>> output = m(input) >>> # target output size of 7x7x7 (cube) >>> m = nn.AdaptiveAvgPool3d(7) >>> input = torch.randn(1, 64, 10, 9, 8) >>> output = m(input) >>> # target output size of 7x9x8 >>> m = nn.AdaptiveMaxPool3d((7, None, None)) >>> input = torch.randn(1, 64, 10, 9, 8) >>> output = m(input)
Padding layers¶
ReflectionPad1d¶
-
class
torch.nn.
ReflectionPad1d
(padding)[source]¶ Pads the input tensor using the reflection of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 2-tuple, uses ( , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ReflectionPad1d(2) >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) >>> input tensor([[[0., 1., 2., 3.], [4., 5., 6., 7.]]]) >>> m(input) tensor([[[2., 1., 0., 1., 2., 3., 2., 1.], [6., 5., 4., 5., 6., 7., 6., 5.]]]) >>> # using different paddings for different sides >>> m = nn.ReflectionPad1d((3, 1)) >>> m(input) tensor([[[3., 2., 1., 0., 1., 2., 3., 2.], [7., 6., 5., 4., 5., 6., 7., 6.]]])
ReflectionPad2d¶
-
class
torch.nn.
ReflectionPad2d
(padding)[source]¶ Pads the input tensor using the reflection of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses ( , , , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ReflectionPad2d(2) >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) >>> input tensor([[[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]]) >>> m(input) tensor([[[[8., 7., 6., 7., 8., 7., 6.], [5., 4., 3., 4., 5., 4., 3.], [2., 1., 0., 1., 2., 1., 0.], [5., 4., 3., 4., 5., 4., 3.], [8., 7., 6., 7., 8., 7., 6.], [5., 4., 3., 4., 5., 4., 3.], [2., 1., 0., 1., 2., 1., 0.]]]]) >>> # using different paddings for different sides >>> m = nn.ReflectionPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[7., 6., 7., 8., 7.], [4., 3., 4., 5., 4.], [1., 0., 1., 2., 1.], [4., 3., 4., 5., 4.], [7., 6., 7., 8., 7.]]]])
ReplicationPad1d¶
-
class
torch.nn.
ReplicationPad1d
(padding)[source]¶ Pads the input tensor using replication of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 2-tuple, uses ( , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ReplicationPad1d(2) >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) >>> input tensor([[[0., 1., 2., 3.], [4., 5., 6., 7.]]]) >>> m(input) tensor([[[0., 0., 0., 1., 2., 3., 3., 3.], [4., 4., 4., 5., 6., 7., 7., 7.]]]) >>> # using different paddings for different sides >>> m = nn.ReplicationPad1d((3, 1)) >>> m(input) tensor([[[0., 0., 0., 0., 1., 2., 3., 3.], [4., 4., 4., 4., 5., 6., 7., 7.]]])
ReplicationPad2d¶
-
class
torch.nn.
ReplicationPad2d
(padding)[source]¶ Pads the input tensor using replication of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses ( , , , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ReplicationPad2d(2) >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) >>> input tensor([[[[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]]]) >>> m(input) tensor([[[[0., 0., 0., 1., 2., 2., 2.], [0., 0., 0., 1., 2., 2., 2.], [0., 0., 0., 1., 2., 2., 2.], [3., 3., 3., 4., 5., 5., 5.], [6., 6., 6., 7., 8., 8., 8.], [6., 6., 6., 7., 8., 8., 8.], [6., 6., 6., 7., 8., 8., 8.]]]]) >>> # using different paddings for different sides >>> m = nn.ReplicationPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[0., 0., 1., 2., 2.], [0., 0., 1., 2., 2.], [0., 0., 1., 2., 2.], [3., 3., 4., 5., 5.], [6., 6., 7., 8., 8.]]]])
ReplicationPad3d¶
-
class
torch.nn.
ReplicationPad3d
(padding)[source]¶ Pads the input tensor using replication of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses ( , , , , , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ReplicationPad3d(3) >>> input = torch.randn(16, 3, 8, 320, 480) >>> output = m(input) >>> # using different paddings for different sides >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1)) >>> output = m(input)
ZeroPad2d¶
-
class
torch.nn.
ZeroPad2d
(padding)[source]¶ Pads the input tensor boundaries with zero.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses ( , , , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ZeroPad2d(2) >>> input = torch.randn(1, 1, 3, 3) >>> input tensor([[[[-0.1678, -0.4418, 1.9466], [ 0.9604, -0.4219, -0.5241], [-0.9162, -0.5436, -0.6446]]]]) >>> m(input) tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) >>> # using different paddings for different sides >>> m = nn.ZeroPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000], [ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000], [ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])
ConstantPad1d¶
-
class
torch.nn.
ConstantPad1d
(padding, value)[source]¶ Pads the input tensor boundaries with a constant value.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in both boundaries. If a 2-tuple, uses ( , )
- Shape:
Input:
Output: where
Examples:
>>> m = nn.ConstantPad1d(2, 3.5) >>> input = torch.randn(1, 2, 4) >>> input tensor([[[-1.0491, -0.7152, -0.0749, 0.8530], [-1.3287, 1.8966, 0.1466, -0.2771]]]) >>> m(input) tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000, 3.5000], [ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000, 3.5000]]]) >>> m = nn.ConstantPad1d(2, 3.5) >>> input = torch.randn(1, 2, 3) >>> input tensor([[[ 1.6616, 1.4523, -1.1255], [-3.6372, 0.1182, -1.8652]]]) >>> m(input) tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000], [ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]]) >>> # using different paddings for different sides >>> m = nn.ConstantPad1d((3, 1), 3.5) >>> m(input) tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000], [ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
ConstantPad2d¶
-
class
torch.nn.
ConstantPad2d
(padding, value)[source]¶ Pads the input tensor boundaries with a constant value.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses ( , , , )
- Shape:
Input:
Output: where