Shortcuts

# torch.squeeze¶

torch.squeeze(input, dim=None, *, out=None)Tensor

Returns a tensor with all the dimensions of input of size 1 removed.

For example, if input is of shape: $(A \times 1 \times B \times C \times 1 \times D)$ then the out tensor will be of shape: $(A \times B \times C \times D)$.

When dim is given, a squeeze operation is done only in the given dimension. If input is of shape: $(A \times 1 \times B)$, squeeze(input, 0) leaves the tensor unchanged, but squeeze(input, 1) will squeeze the tensor to the shape $(A \times B)$.

Note

The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other.

Warning

If the tensor has a batch dimension of size 1, then squeeze(input) will also remove the batch dimension, which can lead to unexpected errors.

Parameters
• input (Tensor) – the input tensor.

• dim (int, optional) – if given, the input will be squeezed only in this dimension

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2]) ## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials