"""The typing module: Support for gradual typing as defined by PEP 484.At large scale, the structure of the module is following:* Imports and exports, all public names should be explicitly added to __all__.* Internal helper functions: these should never be used in code outside this module.* _SpecialForm and its instances (special forms): Any, NoReturn, ClassVar, Union, Optional* Two classes whose instances can be type arguments in addition to types: ForwardRef and TypeVar* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str], etc., are instances of either of these classes.* The public counterpart of the generics API consists of two classes: Generic and Protocol (the latter is currently private, but will be made public after PEP 544 acceptance).* Public helper functions: get_type_hints, overload, cast, no_type_check, no_type_check_decorator.* Generic aliases for collections.abc ABCs and few additional protocols.* Special types: NewType, NamedTuple, TypedDict (may be added soon).* Wrapper submodules for re and io related types."""importabcfromabcimportabstractmethod,abstractpropertyimportcollectionsimportcollections.abcimportcontextlibimportfunctoolsimportoperatorimportreasstdlib_re# Avoid confusion with the re we export.importsysimporttypesfromtypesimportWrapperDescriptorType,MethodWrapperType,MethodDescriptorType# Please keep __all__ alphabetized within each category.__all__=[# Super-special typing primitives.'Any','Callable','ClassVar','ForwardRef','Generic','Optional','Tuple','Type','TypeVar','Union',# ABCs (from collections.abc).'AbstractSet',# collections.abc.Set.'ByteString','Container','ContextManager','Hashable','ItemsView','Iterable','Iterator','KeysView','Mapping','MappingView','MutableMapping','MutableSequence','MutableSet','Sequence','Sized','ValuesView','Awaitable','AsyncIterator','AsyncIterable','Coroutine','Collection','AsyncGenerator','AsyncContextManager',# Structural checks, a.k.a. protocols.'Reversible','SupportsAbs','SupportsBytes','SupportsComplex','SupportsFloat','SupportsInt','SupportsRound',# Concrete collection types.'ChainMap','Counter','Deque','Dict','DefaultDict','List','OrderedDict','Set','FrozenSet','NamedTuple',# Not really a type.'Generator',# One-off things.'AnyStr','cast','get_type_hints','NewType','no_type_check','no_type_check_decorator','NoReturn','overload','Text','TYPE_CHECKING',]# The pseudo-submodules 're' and 'io' are part of the public# namespace, but excluded from __all__ because they might stomp on# legitimate imports of those modules.def_type_check(arg,msg,is_argument=True):"""Check that the argument is a type, and return it (internal helper). As a special case, accept None and return type(None) instead. Also wrap strings into ForwardRef instances. Consider several corner cases, for example plain special forms like Union are not valid, while Union[int, str] is OK, etc. The msg argument is a human-readable error message, e.g:: "Union[arg, ...]: arg should be a type." We append the repr() of the actual value (truncated to 100 chars). """invalid_generic_forms=(Generic,_Protocol)ifis_argument:invalid_generic_forms=invalid_generic_forms+(ClassVar,)ifargisNone:returntype(None)ifisinstance(arg,str):returnForwardRef(arg)if(isinstance(arg,_GenericAlias)andarg.__origin__ininvalid_generic_forms):raiseTypeError(f"{arg} is not valid as type argument")if(isinstance(arg,_SpecialForm)andargnotin(Any,NoReturn)orargin(Generic,_Protocol)):raiseTypeError(f"Plain {arg} is not valid as type argument")ifisinstance(arg,(type,TypeVar,ForwardRef)):returnargifnotcallable(arg):raiseTypeError(f"{msg} Got {arg!r:.100}.")returnargdef_type_repr(obj):"""Return the repr() of an object, special-casing types (internal helper). If obj is a type, we return a shorter version than the default type.__repr__, based on the module and qualified name, which is typically enough to uniquely identify a type. For everything else, we fall back on repr(obj). """ifisinstance(obj,type):ifobj.__module__=='builtins':returnobj.__qualname__returnf'{obj.__module__}.{obj.__qualname__}'ifobjis...:return('...')ifisinstance(obj,types.FunctionType):returnobj.__name__returnrepr(obj)def_collect_type_vars(types):"""Collect all type variable contained in types in order of first appearance (lexicographic order). For example:: _collect_type_vars((T, List[S, T])) == (T, S) """tvars=[]fortintypes:ifisinstance(t,TypeVar)andtnotintvars:tvars.append(t)ifisinstance(t,_GenericAlias)andnott._special:tvars.extend([tfortint.__parameters__iftnotintvars])returntuple(tvars)def_subs_tvars(tp,tvars,subs):"""Substitute type variables 'tvars' with substitutions 'subs'. These two must have the same length. """ifnotisinstance(tp,_GenericAlias):returntpnew_args=list(tp.__args__)fora,arginenumerate(tp.__args__):ifisinstance(arg,TypeVar):fori,tvarinenumerate(tvars):ifarg==tvar:new_args[a]=subs[i]else:new_args[a]=_subs_tvars(arg,tvars,subs)iftp.__origin__isUnion:returnUnion[tuple(new_args)]returntp.copy_with(tuple(new_args))def_check_generic(cls,parameters):"""Check correct count for parameters of a generic cls (internal helper). This gives a nice error message in case of count mismatch. """ifnotcls.__parameters__:raiseTypeError(f"{cls} is not a generic class")alen=len(parameters)elen=len(cls.__parameters__)ifalen!=elen:raiseTypeError(f"Too {'many'ifalen>elenelse'few'} parameters for {cls};"f" actual {alen}, expected {elen}")def_remove_dups_flatten(parameters):"""An internal helper for Union creation and substitution: flatten Unions among parameters, then remove duplicates. """# Flatten out Union[Union[...], ...].params=[]forpinparameters:ifisinstance(p,_GenericAlias)andp.__origin__isUnion:params.extend(p.__args__)elifisinstance(p,tuple)andlen(p)>0andp[0]isUnion:params.extend(p[1:])else:params.append(p)# Weed out strict duplicates, preserving the first of each occurrence.all_params=set(params)iflen(all_params)<len(params):new_params=[]fortinparams:iftinall_params:new_params.append(t)all_params.remove(t)params=new_paramsassertnotall_params,all_paramsreturntuple(params)_cleanups=[]def_tp_cache(func):"""Internal wrapper caching __getitem__ of generic types with a fallback to original function for non-hashable arguments. """cached=functools.lru_cache()(func)_cleanups.append(cached.cache_clear)@functools.wraps(func)definner(*args,**kwds):try:returncached(*args,**kwds)exceptTypeError:pass# All real errors (not unhashable args) are raised below.returnfunc(*args,**kwds)returninnerdef_eval_type(t,globalns,localns):"""Evaluate all forward reverences in the given type t. For use of globalns and localns see the docstring for get_type_hints(). """ifisinstance(t,ForwardRef):returnt._evaluate(globalns,localns)ifisinstance(t,_GenericAlias):ev_args=tuple(_eval_type(a,globalns,localns)foraint.__args__)ifev_args==t.__args__:returntres=t.copy_with(ev_args)res._special=t._specialreturnresreturntclass_Final:"""Mixin to prohibit subclassing"""__slots__=('__weakref__',)def__init_subclass__(self,*args,**kwds):if'_root'notinkwds:raiseTypeError("Cannot subclass special typing classes")class_Immutable:"""Mixin to indicate that object should not be copied."""def__copy__(self):returnselfdef__deepcopy__(self,memo):returnselfclass_SpecialForm(_Final,_Immutable,_root=True):"""Internal indicator of special typing constructs. See _doc instance attribute for specific docs. """__slots__=('_name','_doc')def__new__(cls,*args,**kwds):"""Constructor. This only exists to give a better error message in case someone tries to subclass a special typing object (not a good idea). """if(len(args)==3andisinstance(args[0],str)andisinstance(args[1],tuple)):# Close enough.raiseTypeError(f"Cannot subclass {cls!r}")returnsuper().__new__(cls)def__init__(self,name,doc):self._name=nameself._doc=docdef__eq__(self,other):ifnotisinstance(other,_SpecialForm):returnNotImplementedreturnself._name==other._namedef__hash__(self):returnhash((self._name,))def__repr__(self):return'typing.'+self._namedef__reduce__(self):returnself._namedef__call__(self,*args,**kwds):raiseTypeError(f"Cannot instantiate {self!r}")def__instancecheck__(self,obj):raiseTypeError(f"{self} cannot be used with isinstance()")def__subclasscheck__(self,cls):raiseTypeError(f"{self} cannot be used with issubclass()")@_tp_cachedef__getitem__(self,parameters):ifself._name=='ClassVar':item=_type_check(parameters,'ClassVar accepts only single type.')return_GenericAlias(self,(item,))ifself._name=='Union':ifparameters==():raiseTypeError("Cannot take a Union of no types.")ifnotisinstance(parameters,tuple):parameters=(parameters,)msg="Union[arg, ...]: each arg must be a type."parameters=tuple(_type_check(p,msg)forpinparameters)parameters=_remove_dups_flatten(parameters)iflen(parameters)==1:returnparameters[0]return_GenericAlias(self,parameters)ifself._name=='Optional':arg=_type_check(parameters,"Optional[t] requires a single type.")returnUnion[arg,type(None)]raiseTypeError(f"{self} is not subscriptable")Any=_SpecialForm('Any',doc="""Special type indicating an unconstrained type. - Any is compatible with every type. - Any assumed to have all methods. - All values assumed to be instances of Any. Note that all the above statements are true from the point of view of static type checkers. At runtime, Any should not be used with instance or class checks. """)NoReturn=_SpecialForm('NoReturn',doc="""Special type indicating functions that never return. Example:: from typing import NoReturn def stop() -> NoReturn: raise Exception('no way') This type is invalid in other positions, e.g., ``List[NoReturn]`` will fail in static type checkers. """)ClassVar=_SpecialForm('ClassVar',doc="""Special type construct to mark class variables. An annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class variable and should not be set on instances of that class. Usage:: class Starship: stats: ClassVar[Dict[str, int]] = {} # class variable damage: int = 10 # instance variable ClassVar accepts only types and cannot be further subscribed. Note that ClassVar is not a class itself, and should not be used with isinstance() or issubclass(). """)Union=_SpecialForm('Union',doc="""Union type; Union[X, Y] means either X or Y. To define a union, use e.g. Union[int, str]. Details: - The arguments must be types and there must be at least one. - None as an argument is a special case and is replaced by type(None). - Unions of unions are flattened, e.g.:: Union[Union[int, str], float] == Union[int, str, float] - Unions of a single argument vanish, e.g.:: Union[int] == int # The constructor actually returns int - Redundant arguments are skipped, e.g.:: Union[int, str, int] == Union[int, str] - When comparing unions, the argument order is ignored, e.g.:: Union[int, str] == Union[str, int] - You cannot subclass or instantiate a union. - You can use Optional[X] as a shorthand for Union[X, None]. """)Optional=_SpecialForm('Optional',doc="""Optional type. Optional[X] is equivalent to Union[X, None]. """)classForwardRef(_Final,_root=True):"""Internal wrapper to hold a forward reference."""__slots__=('__forward_arg__','__forward_code__','__forward_evaluated__','__forward_value__','__forward_is_argument__')def__init__(self,arg,is_argument=True):ifnotisinstance(arg,str):raiseTypeError(f"Forward reference must be a string -- got {arg!r}")try:code=compile(arg,'<string>','eval')exceptSyntaxError:raiseSyntaxError(f"Forward reference must be an expression -- got {arg!r}")self.__forward_arg__=argself.__forward_code__=codeself.__forward_evaluated__=Falseself.__forward_value__=Noneself.__forward_is_argument__=is_argumentdef_evaluate(self,globalns,localns):ifnotself.__forward_evaluated__orlocalnsisnotglobalns:ifglobalnsisNoneandlocalnsisNone:globalns=localns={}elifglobalnsisNone:globalns=localnseliflocalnsisNone:localns=globalnsself.__forward_value__=_type_check(eval(self.__forward_code__,globalns,localns),"Forward references must evaluate to types.",is_argument=self.__forward_is_argument__)self.__forward_evaluated__=Truereturnself.__forward_value__def__eq__(self,other):ifnotisinstance(other,ForwardRef):returnNotImplementedifself.__forward_evaluated__andother.__forward_evaluated__:return(self.__forward_arg__==other.__forward_arg__andself.__forward_value__==other.__forward_value__)returnself.__forward_arg__==other.__forward_arg__def__hash__(self):returnhash(self.__forward_arg__)def__repr__(self):returnf'ForwardRef({self.__forward_arg__!r})'classTypeVar(_Final,_Immutable,_root=True):"""Type variable. Usage:: T = TypeVar('T') # Can be anything A = TypeVar('A', str, bytes) # Must be str or bytes Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows: def repeat(x: T, n: int) -> List[T]: '''Return a list containing n references to x.''' return [x]*n def longest(x: A, y: A) -> A: '''Return the longest of two strings.''' return x if len(x) >= len(y) else y The latter example's signature is essentially the overloading of (str, str) -> str and (bytes, bytes) -> bytes. Also note that if the arguments are instances of some subclass of str, the return type is still plain str. At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. Type variables defined with covariant=True or contravariant=True can be used to declare covariant or contravariant generic types. See PEP 484 for more details. By default generic types are invariant in all type variables. Type variables can be introspected. e.g.: T.__name__ == 'T' T.__constraints__ == () T.__covariant__ == False T.__contravariant__ = False A.__constraints__ == (str, bytes) Note that only type variables defined in global scope can be pickled. """__slots__=('__name__','__bound__','__constraints__','__covariant__','__contravariant__')def__init__(self,name,*constraints,bound=None,covariant=False,contravariant=False):self.__name__=nameifcovariantandcontravariant:raiseValueError("Bivariant types are not supported.")self.__covariant__=bool(covariant)self.__contravariant__=bool(contravariant)ifconstraintsandboundisnotNone:raiseTypeError("Constraints cannot be combined with bound=...")ifconstraintsandlen(constraints)==1:raiseTypeError("A single constraint is not allowed")msg="TypeVar(name, constraint, ...): constraints must be types."self.__constraints__=tuple(_type_check(t,msg)fortinconstraints)ifbound:self.__bound__=_type_check(bound,"Bound must be a type.")else:self.__bound__=Nonetry:def_mod=sys._getframe(1).f_globals.get('__name__','__main__')# for picklingexcept(AttributeError,ValueError):def_mod=Noneifdef_mod!='typing':self.__module__=def_moddef__repr__(self):ifself.__covariant__:prefix='+'elifself.__contravariant__:prefix='-'else:prefix='~'returnprefix+self.__name__def__reduce__(self):returnself.__name__# Special typing constructs Union, Optional, Generic, Callable and Tuple# use three special attributes for internal bookkeeping of generic types:# * __parameters__ is a tuple of unique free type parameters of a generic# type, for example, Dict[T, T].__parameters__ == (T,);# * __origin__ keeps a reference to a type that was subscripted,# e.g., Union[T, int].__origin__ == Union, or the non-generic version of# the type.# * __args__ is a tuple of all arguments used in subscripting,# e.g., Dict[T, int].__args__ == (T, int).# Mapping from non-generic type names that have a generic alias in typing# but with a different name._normalize_alias={'list':'List','tuple':'Tuple','dict':'Dict','set':'Set','frozenset':'FrozenSet','deque':'Deque','defaultdict':'DefaultDict','type':'Type','Set':'AbstractSet'}def_is_dunder(attr):returnattr.startswith('__')andattr.endswith('__')class_GenericAlias(_Final,_root=True):"""The central part of internal API. This represents a generic version of type 'origin' with type arguments 'params'. There are two kind of these aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collections.abc. These must have 'name' always set. If 'inst' is False, then the alias can't be instantiated, this is used by e.g. typing.List and typing.Dict. """def__init__(self,origin,params,*,inst=True,special=False,name=None):self._inst=instself._special=specialifspecialandnameisNone:orig_name=origin.__name__name=_normalize_alias.get(orig_name,orig_name)self._name=nameifnotisinstance(params,tuple):params=(params,)self.__origin__=originself.__args__=tuple(...ifais_TypingEllipsiselse()ifais_TypingEmptyelseaforainparams)self.__parameters__=_collect_type_vars(params)self.__slots__=None# This is not documented.ifnotname:self.__module__=origin.__module__@_tp_cachedef__getitem__(self,params):ifself.__origin__in(Generic,_Protocol):# Can't subscript Generic[...] or _Protocol[...].raiseTypeError(f"Cannot subscript already-subscripted {self}")ifnotisinstance(params,tuple):params=(params,)msg="Parameters to generic types must be types."params=tuple(_type_check(p,msg)forpinparams)_check_generic(self,params)return_subs_tvars(self,self.__parameters__,params)defcopy_with(self,params):# We don't copy self._special.return_GenericAlias(self.__origin__,params,name=self._name,inst=self._inst)def__repr__(self):if(self._name!='Callable'orlen(self.__args__)==2andself.__args__[0]isEllipsis):ifself._name:name='typing.'+self._nameelse:name=_type_repr(self.__origin__)ifnotself._special:args=f'[{", ".join([_type_repr(a)forainself.__args__])}]'else:args=''return(f'{name}{args}')ifself._special:return'typing.Callable'return(f'typing.Callable'f'[[{", ".join([_type_repr(a)forainself.__args__[:-1]])}], 'f'{_type_repr(self.__args__[-1])}]')def__eq__(self,other):ifnotisinstance(other,_GenericAlias):returnNotImplementedifself.__origin__!=other.__origin__:returnFalseifself.__origin__isUnionandother.__origin__isUnion:returnfrozenset(self.__args__)==frozenset(other.__args__)returnself.__args__==other.__args__def__hash__(self):ifself.__origin__isUnion:returnhash((Union,frozenset(self.__args__)))returnhash((self.__origin__,self.__args__))def__call__(self,*args,**kwargs):ifnotself._inst:raiseTypeError(f"Type {self._name} cannot be instantiated; "f"use {self._name.lower()}() instead")result=self.__origin__(*args,**kwargs)try:result.__orig_class__=selfexceptAttributeError:passreturnresultdef__mro_entries__(self,bases):ifself._name:# generic version of an ABC or built-in classres=[]ifself.__origin__notinbases:res.append(self.__origin__)i=bases.index(self)ifnotany(isinstance(b,_GenericAlias)orissubclass(b,Generic)forbinbases[i+1:]):res.append(Generic)returntuple(res)ifself.__origin__isGeneric:i=bases.index(self)forbinbases[i+1:]:ifisinstance(b,_GenericAlias)andbisnotself:return()return(self.__origin__,)def__getattr__(self,attr):# We are careful for copy and pickle.# Also for simplicity we just don't relay all dunder namesif'__origin__'inself.__dict__andnot_is_dunder(attr):returngetattr(self.__origin__,attr)raiseAttributeError(attr)def__setattr__(self,attr,val):if_is_dunder(attr)orattrin('_name','_inst','_special'):super().__setattr__(attr,val)else:setattr(self.__origin__,attr,val)def__instancecheck__(self,obj):returnself.__subclasscheck__(type(obj))def__subclasscheck__(self,cls):ifself._special:ifnotisinstance(cls,_GenericAlias):returnissubclass(cls,self.__origin__)ifcls._special:returnissubclass(cls.__origin__,self.__origin__)raiseTypeError("Subscripted generics cannot be used with"" class and instance checks")def__reduce__(self):ifself._special:returnself._nameifself._name:origin=globals()[self._name]else:origin=self.__origin__if(originisCallableandnot(len(self.__args__)==2andself.__args__[0]isEllipsis)):args=list(self.__args__[:-1]),self.__args__[-1]else:args=tuple(self.__args__)iflen(args)==1andnotisinstance(args[0],tuple):args,=argsreturnoperator.getitem,(origin,args)class_VariadicGenericAlias(_GenericAlias,_root=True):"""Same as _GenericAlias above but for variadic aliases. Currently, this is used only by special internal aliases: Tuple and Callable. """def__getitem__(self,params):ifself._name!='Callable'ornotself._special:returnself.__getitem_inner__(params)ifnotisinstance(params,tuple)orlen(params)!=2:raiseTypeError("Callable must be used as ""Callable[[arg, ...], result].")args,result=paramsifargsisEllipsis:params=(Ellipsis,result)else:ifnotisinstance(args,list):raiseTypeError(f"Callable[args, result]: args must be a list."f" Got {args}")params=(tuple(args),result)returnself.__getitem_inner__(params)@_tp_cachedef__getitem_inner__(self,params):ifself.__origin__istupleandself._special:ifparams==():returnself.copy_with((_TypingEmpty,))ifnotisinstance(params,tuple):params=(params,)iflen(params)==2andparams[1]is...:msg="Tuple[t, ...]: t must be a type."p=_type_check(params[0],msg)returnself.copy_with((p,_TypingEllipsis))msg="Tuple[t0, t1, ...]: each t must be a type."params=tuple(_type_check(p,msg)forpinparams)returnself.copy_with(params)ifself.__origin__iscollections.abc.Callableandself._special:args,result=paramsmsg="Callable[args, result]: result must be a type."result=_type_check(result,msg)ifargsisEllipsis:returnself.copy_with((_TypingEllipsis,result))msg="Callable[[arg, ...], result]: each arg must be a type."args=tuple(_type_check(arg,msg)forarginargs)params=args+(result,)returnself.copy_with(params)returnsuper().__getitem__(params)classGeneric:"""Abstract base class for generic types. A generic type is typically declared by inheriting from this class parameterized with one or more type variables. For example, a generic mapping type might be defined as:: class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc. This class can then be used as follows:: def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: try: return mapping[key] except KeyError: return default """__slots__=()def__new__(cls,*args,**kwds):ifclsisGeneric:raiseTypeError("Type Generic cannot be instantiated; ""it can be used only as a base class")ifsuper().__new__isobject.__new__andcls.__init__isnotobject.__init__:obj=super().__new__(cls)else:obj=super().__new__(cls,*args,**kwds)returnobj@_tp_cachedef__class_getitem__(cls,params):ifnotisinstance(params,tuple):params=(params,)ifnotparamsandclsisnotTuple:raiseTypeError(f"Parameter list to {cls.__qualname__}[...] cannot be empty")msg="Parameters to generic types must be types."params=tuple(_type_check(p,msg)forpinparams)ifclsisGeneric:# Generic can only be subscripted with unique type variables.ifnotall(isinstance(p,TypeVar)forpinparams):raiseTypeError("Parameters to Generic[...] must all be type variables")iflen(set(params))!=len(params):raiseTypeError("Parameters to Generic[...] must all be unique")elifclsis_Protocol:# _Protocol is internal at the moment, just skip the checkpasselse:# Subscripting a regular Generic subclass._check_generic(cls,params)return_GenericAlias(cls,params)def__init_subclass__(cls,*args,**kwargs):super().__init_subclass__(*args,**kwargs)tvars=[]if'__orig_bases__'incls.__dict__:error=Genericincls.__orig_bases__else:error=Genericincls.__bases__andcls.__name__!='_Protocol'iferror:raiseTypeError("Cannot inherit from plain Generic")if'__orig_bases__'incls.__dict__:tvars=_collect_type_vars(cls.__orig_bases__)# Look for Generic[T1, ..., Tn].# If found, tvars must be a subset of it.# If not found, tvars is it.# Also check for and reject plain Generic,# and reject multiple Generic[...].gvars=Noneforbaseincls.__orig_bases__:if(isinstance(base,_GenericAlias)andbase.__origin__isGeneric):ifgvarsisnotNone:raiseTypeError("Cannot inherit from Generic[...] multiple types.")gvars=base.__parameters__ifgvarsisNone:gvars=tvarselse:tvarset=set(tvars)gvarset=set(gvars)ifnottvarset<=gvarset:s_vars=', '.join(str(t)fortintvarsiftnotingvarset)s_args=', '.join(str(g)forgingvars)raiseTypeError(f"Some type variables ({s_vars}) are"f" not listed in Generic[{s_args}]")tvars=gvarscls.__parameters__=tuple(tvars)class_TypingEmpty:"""Internal placeholder for () or []. Used by TupleMeta and CallableMeta to allow empty list/tuple in specific places, without allowing them to sneak in where prohibited. """class_TypingEllipsis:"""Internal placeholder for ... (ellipsis)."""defcast(typ,val):"""Cast a value to a type. This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don't check anything (we want this to be as fast as possible). """returnvaldef_get_defaults(func):"""Internal helper to extract the default arguments, by name."""try:code=func.__code__exceptAttributeError:# Some built-in functions don't have __code__, __defaults__, etc.return{}pos_count=code.co_argcountarg_names=code.co_varnamesarg_names=arg_names[:pos_count]defaults=func.__defaults__or()kwdefaults=func.__kwdefaults__res=dict(kwdefaults)ifkwdefaultselse{}pos_offset=pos_count-len(defaults)forname,valueinzip(arg_names[pos_offset:],defaults):assertnamenotinresres[name]=valuereturnres_allowed_types=(types.FunctionType,types.BuiltinFunctionType,types.MethodType,types.ModuleType,WrapperDescriptorType,MethodWrapperType,MethodDescriptorType)defget_type_hints(obj,globalns=None,localns=None):"""Return type hints for an object. This is often the same as obj.__annotations__, but it handles forward references encoded as string literals, and if necessary adds Optional[t] if a default value equal to None is set. The argument may be a module, class, method, or function. The annotations are returned as a dictionary. For classes, annotations include also inherited members. TypeError is raised if the argument is not of a type that can contain annotations, and an empty dictionary is returned if no annotations are present. BEWARE -- the behavior of globalns and localns is counterintuitive (unless you are familiar with how eval() and exec() work). The search order is locals first, then globals. - If no dict arguments are passed, an attempt is made to use the globals from obj (or the respective module's globals for classes), and these are also used as the locals. If the object does not appear to have globals, an empty dictionary is used. - If one dict argument is passed, it is used for both globals and locals. - If two dict arguments are passed, they specify globals and locals, respectively. """ifgetattr(obj,'__no_type_check__',None):return{}# Classes require a special treatment.ifisinstance(obj,type):hints={}forbaseinreversed(obj.__mro__):ifglobalnsisNone:base_globals=sys.modules[base.__module__].__dict__else:base_globals=globalnsann=base.__dict__.get('__annotations__',{})forname,valueinann.items():ifvalueisNone:value=type(None)ifisinstance(value,str):value=ForwardRef(value,is_argument=False)value=_eval_type(value,base_globals,localns)hints[name]=valuereturnhintsifglobalnsisNone:ifisinstance(obj,types.ModuleType):globalns=obj.__dict__else:nsobj=obj# Find globalns for the unwrapped object.whilehasattr(nsobj,'__wrapped__'):nsobj=nsobj.__wrapped__globalns=getattr(nsobj,'__globals__',{})iflocalnsisNone:localns=globalnseliflocalnsisNone:localns=globalnshints=getattr(obj,'__annotations__',None)ifhintsisNone:# Return empty annotations for something that _could_ have them.ifisinstance(obj,_allowed_types):return{}else:raiseTypeError('{!r} is not a module, class, method, ''or function.'.format(obj))defaults=_get_defaults(obj)hints=dict(hints)forname,valueinhints.items():ifvalueisNone:value=type(None)ifisinstance(value,str):value=ForwardRef(value)value=_eval_type(value,globalns,localns)ifnameindefaultsanddefaults[name]isNone:value=Optional[value]hints[name]=valuereturnhintsdefno_type_check(arg):"""Decorator to indicate that annotations are not type hints. The argument must be a class or function; if it is a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses). This mutates the function(s) or class(es) in place. """ifisinstance(arg,type):arg_attrs=arg.__dict__.copy()forattr,valinarg.__dict__.items():ifvalinarg.__bases__+(arg,):arg_attrs.pop(attr)forobjinarg_attrs.values():ifisinstance(obj,types.FunctionType):obj.__no_type_check__=Trueifisinstance(obj,type):no_type_check(obj)try:arg.__no_type_check__=TrueexceptTypeError:# built-in classespassreturnargdefno_type_check_decorator(decorator):"""Decorator to give another decorator the @no_type_check effect. This wraps the decorator with something that wraps the decorated function in @no_type_check. """@functools.wraps(decorator)defwrapped_decorator(*args,**kwds):func=decorator(*args,**kwds)func=no_type_check(func)returnfuncreturnwrapped_decoratordef_overload_dummy(*args,**kwds):"""Helper for @overload to raise when called."""raiseNotImplementedError("You should not call an overloaded function. ""A series of @overload-decorated functions ""outside a stub module should always be followed ""by an implementation that is not @overload-ed.")defoverload(func):"""Decorator for overloaded functions/methods. In a stub file, place two or more stub definitions for the same function in a row, each decorated with @overload. For example: @overload def utf8(value: None) -> None: ... @overload def utf8(value: bytes) -> bytes: ... @overload def utf8(value: str) -> bytes: ... In a non-stub file (i.e. a regular .py file), do the same but follow it with an implementation. The implementation should *not* be decorated with @overload. For example: @overload def utf8(value: None) -> None: ... @overload def utf8(value: bytes) -> bytes: ... @overload def utf8(value: str) -> bytes: ... def utf8(value): # implementation goes here """return_overload_dummyclass_ProtocolMeta(type):"""Internal metaclass for _Protocol. This exists so _Protocol classes can be generic without deriving from Generic. """def__instancecheck__(self,obj):if_Protocolnotinself.__bases__:returnsuper().__instancecheck__(obj)raiseTypeError("Protocols cannot be used with isinstance().")def__subclasscheck__(self,cls):ifnotself._is_protocol:# No structural checks since this isn't a protocol.returnNotImplementedifselfis_Protocol:# Every class is a subclass of the empty protocol.returnTrue# Find all attributes defined in the protocol.attrs=self._get_protocol_attrs()forattrinattrs:ifnotany(attrind.__dict__fordincls.__mro__):returnFalsereturnTruedef_get_protocol_attrs(self):# Get all Protocol base classes.protocol_bases=[]forcinself.__mro__:ifgetattr(c,'_is_protocol',False)andc.__name__!='_Protocol':protocol_bases.append(c)# Get attributes included in protocol.attrs=set()forbaseinprotocol_bases:forattrinbase.__dict__.keys():# Include attributes not defined in any non-protocol bases.forcinself.__mro__:if(cisnotbaseandattrinc.__dict__andnotgetattr(c,'_is_protocol',False)):breakelse:if(notattr.startswith('_abc_')andattr!='__abstractmethods__'andattr!='__annotations__'andattr!='__weakref__'andattr!='_is_protocol'andattr!='_gorg'andattr!='__dict__'andattr!='__args__'andattr!='__slots__'andattr!='_get_protocol_attrs'andattr!='__next_in_mro__'andattr!='__parameters__'andattr!='__origin__'andattr!='__orig_bases__'andattr!='__extra__'andattr!='__tree_hash__'andattr!='__module__'):attrs.add(attr)returnattrsclass_Protocol(Generic,metaclass=_ProtocolMeta):"""Internal base class for protocol classes. This implements a simple-minded structural issubclass check (similar but more general than the one-offs in collections.abc such as Hashable). """__slots__=()_is_protocol=Truedef__class_getitem__(cls,params):returnsuper().__class_getitem__(params)# Some unconstrained type variables. These are used by the container types.# (These are not for export.)T=TypeVar('T')# Any type.KT=TypeVar('KT')# Key type.VT=TypeVar('VT')# Value type.T_co=TypeVar('T_co',covariant=True)# Any type covariant containers.V_co=TypeVar('V_co',covariant=True)# Any type covariant containers.VT_co=TypeVar('VT_co',covariant=True)# Value type covariant containers.T_contra=TypeVar('T_contra',contravariant=True)# Ditto contravariant.# Internal type variable used for Type[].CT_co=TypeVar('CT_co',covariant=True,bound=type)# A useful type variable with constraints. This represents string types.# (This one *is* for export!)AnyStr=TypeVar('AnyStr',bytes,str)# Various ABCs mimicking those in collections.abc.def_alias(origin,params,inst=True):return_GenericAlias(origin,params,special=True,inst=inst)Hashable=_alias(collections.abc.Hashable,())# Not generic.Awaitable=_alias(collections.abc.Awaitable,T_co)Coroutine=_alias(collections.abc.Coroutine,(T_co,T_contra,V_co))AsyncIterable=_alias(collections.abc.AsyncIterable,T_co)AsyncIterator=_alias(collections.abc.AsyncIterator,T_co)Iterable=_alias(collections.abc.Iterable,T_co)Iterator=_alias(collections.abc.Iterator,T_co)Reversible=_alias(collections.abc.Reversible,T_co)Sized=_alias(collections.abc.Sized,())# Not generic.Container=_alias(collections.abc.Container,T_co)Collection=_alias(collections.abc.Collection,T_co)Callable=_VariadicGenericAlias(collections.abc.Callable,(),special=True)Callable.__doc__= \
"""Callable type; Callable[[int], str] is a function of (int) -> str. The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types or ellipsis; the return type must be a single type. There is no syntax to indicate optional or keyword arguments, such function types are rarely used as callback types. """AbstractSet=_alias(collections.abc.Set,T_co)MutableSet=_alias(collections.abc.MutableSet,T)# NOTE: Mapping is only covariant in the value type.Mapping=_alias(collections.abc.Mapping,(KT,VT_co))MutableMapping=_alias(collections.abc.MutableMapping,(KT,VT))Sequence=_alias(collections.abc.Sequence,T_co)MutableSequence=_alias(collections.abc.MutableSequence,T)ByteString=_alias(collections.abc.ByteString,())# Not genericTuple=_VariadicGenericAlias(tuple,(),inst=False,special=True)Tuple.__doc__= \
"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y. Example: Tuple[T1, T2] is a tuple of two elements corresponding to type variables T1 and T2. Tuple[int, float, str] is a tuple of an int, a float and a string. To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. """List=_alias(list,T,inst=False)Deque=_alias(collections.deque,T)Set=_alias(set,T,inst=False)FrozenSet=_alias(frozenset,T_co,inst=False)MappingView=_alias(collections.abc.MappingView,T_co)KeysView=_alias(collections.abc.KeysView,KT)ItemsView=_alias(collections.abc.ItemsView,(KT,VT_co))ValuesView=_alias(collections.abc.ValuesView,VT_co)ContextManager=_alias(contextlib.AbstractContextManager,T_co)AsyncContextManager=_alias(contextlib.AbstractAsyncContextManager,T_co)Dict=_alias(dict,(KT,VT),inst=False)DefaultDict=_alias(collections.defaultdict,(KT,VT))OrderedDict=_alias(collections.OrderedDict,(KT,VT))Counter=_alias(collections.Counter,T)ChainMap=_alias(collections.ChainMap,(KT,VT))Generator=_alias(collections.abc.Generator,(T_co,T_contra,V_co))AsyncGenerator=_alias(collections.abc.AsyncGenerator,(T_co,T_contra))Type=_alias(type,CT_co,inst=False)Type.__doc__= \
"""A special construct usable to annotate class objects. For example, suppose we have the following classes:: class User: ... # Abstract base for User classes class BasicUser(User): ... class ProUser(User): ... class TeamUser(User): ... And a function that takes a class argument that's a subclass of User and returns an instance of the corresponding class:: U = TypeVar('U', bound=User) def new_user(user_class: Type[U]) -> U: user = user_class() # (Here we could write the user object to a database) return user joe = new_user(BasicUser) At this point the type checker knows that joe has type BasicUser. """classSupportsInt(_Protocol):"""An ABC with one abstract method __int__."""__slots__=()@abstractmethoddef__int__(self)->int:passclassSupportsFloat(_Protocol):"""An ABC with one abstract method __float__."""__slots__=()@abstractmethoddef__float__(self)->float:passclassSupportsComplex(_Protocol):"""An ABC with one abstract method __complex__."""__slots__=()@abstractmethoddef__complex__(self)->complex:passclassSupportsBytes(_Protocol):"""An ABC with one abstract method __bytes__."""__slots__=()@abstractmethoddef__bytes__(self)->bytes:passclassSupportsAbs(_Protocol[T_co]):"""An ABC with one abstract method __abs__ that is covariant in its return type."""__slots__=()@abstractmethoddef__abs__(self)->T_co:passclassSupportsRound(_Protocol[T_co]):"""An ABC with one abstract method __round__ that is covariant in its return type."""__slots__=()@abstractmethoddef__round__(self,ndigits:int=0)->T_co:passdef_make_nmtuple(name,types):msg="NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type"types=[(n,_type_check(t,msg))forn,tintypes]nm_tpl=collections.namedtuple(name,[nforn,tintypes])# Prior to PEP 526, only _field_types attribute was assigned.# Now, both __annotations__ and _field_types are used to maintain compatibility.nm_tpl.__annotations__=nm_tpl._field_types=collections.OrderedDict(types)try:nm_tpl.__module__=sys._getframe(2).f_globals.get('__name__','__main__')except(AttributeError,ValueError):passreturnnm_tpl# attributes prohibited to set in NamedTuple class syntax_prohibited=('__new__','__init__','__slots__','__getnewargs__','_fields','_field_defaults','_field_types','_make','_replace','_asdict','_source')_special=('__module__','__name__','__annotations__')classNamedTupleMeta(type):def__new__(cls,typename,bases,ns):ifns.get('_root',False):returnsuper().__new__(cls,typename,bases,ns)types=ns.get('__annotations__',{})nm_tpl=_make_nmtuple(typename,types.items())defaults=[]defaults_dict={}forfield_nameintypes:iffield_nameinns:default_value=ns[field_name]defaults.append(default_value)defaults_dict[field_name]=default_valueelifdefaults:raiseTypeError("Non-default namedtuple field {field_name} cannot ""follow default field(s) {default_names}".format(field_name=field_name,default_names=', '.join(defaults_dict.keys())))nm_tpl.__new__.__annotations__=collections.OrderedDict(types)nm_tpl.__new__.__defaults__=tuple(defaults)nm_tpl._field_defaults=defaults_dict# update from user namespace without overriding special namedtuple attributesforkeyinns:ifkeyin_prohibited:raiseAttributeError("Cannot overwrite NamedTuple attribute "+key)elifkeynotin_specialandkeynotinnm_tpl._fields:setattr(nm_tpl,key,ns[key])returnnm_tplclassNamedTuple(metaclass=NamedTupleMeta):"""Typed version of namedtuple. Usage in Python versions >= 3.6:: class Employee(NamedTuple): name: str id: int This is equivalent to:: Employee = collections.namedtuple('Employee', ['name', 'id']) The resulting class has extra __annotations__ and _field_types attributes, giving an ordered dict mapping field names to types. __annotations__ should be preferred, while _field_types is kept to maintain pre PEP 526 compatibility. (The field names are in the _fields attribute, which is part of the namedtuple API.) Alternative equivalent keyword syntax is also accepted:: Employee = NamedTuple('Employee', name=str, id=int) In Python versions <= 3.5 use:: Employee = NamedTuple('Employee', [('name', str), ('id', int)]) """_root=Truedef__new__(*args,**kwargs):ifnotargs:raiseTypeError('NamedTuple.__new__(): not enough arguments')cls,*args=args# allow the "cls" keyword be passedifargs:typename,*args=args# allow the "typename" keyword be passedelif'typename'inkwargs:typename=kwargs.pop('typename')else:raiseTypeError("NamedTuple.__new__() missing 1 required positional ""argument: 'typename'")ifargs:try:fields,=args# allow the "fields" keyword be passedexceptValueError:raiseTypeError(f'NamedTuple.__new__() takes from 2 to 3 'f'positional arguments but {len(args)+2} 'f'were given')fromNoneelif'fields'inkwargsandlen(kwargs)==1:fields=kwargs.pop('fields')else:fields=NoneiffieldsisNone:fields=kwargs.items()elifkwargs:raiseTypeError("Either list of fields or keywords"" can be provided to NamedTuple, not both")return_make_nmtuple(typename,fields)__new__.__text_signature__='($cls, typename, fields=None, /, **kwargs)'defNewType(name,tp):"""NewType creates simple unique types with almost zero runtime overhead. NewType(name, tp) is considered a subtype of tp by static type checkers. At runtime, NewType(name, tp) returns a dummy function that simply returns its argument. Usage:: UserId = NewType('UserId', int) def name_by_id(user_id: UserId) -> str: ... UserId('user') # Fails type check name_by_id(42) # Fails type check name_by_id(UserId(42)) # OK num = UserId(5) + 1 # type: int """defnew_type(x):returnxnew_type.__name__=namenew_type.__supertype__=tpreturnnew_type# Python-version-specific alias (Python 2: unicode; Python 3: str)Text=str# Constant that's True when type checking, but False here.TYPE_CHECKING=FalseclassIO(Generic[AnyStr]):"""Generic base class for TextIO and BinaryIO. This is an abstract, generic version of the return of open(). NOTE: This does not distinguish between the different possible classes (text vs. binary, read vs. write vs. read/write, append-only, unbuffered). The TextIO and BinaryIO subclasses below capture the distinctions between text vs. binary, which is pervasive in the interface; however we currently do not offer a way to track the other distinctions in the type system. """__slots__=()@abstractpropertydefmode(self)->str:pass@abstractpropertydefname(self)->str:pass@abstractmethoddefclose(self)->None:pass@abstractpropertydefclosed(self)->bool:pass@abstractmethoddeffileno(self)->int:pass@abstractmethoddefflush(self)->None:pass@abstractmethoddefisatty(self)->bool:pass@abstractmethoddefread(self,n:int=-1)->AnyStr:pass@abstractmethoddefreadable(self)->bool:pass@abstractmethoddefreadline(self,limit:int=-1)->AnyStr:pass@abstractmethoddefreadlines(self,hint:int=-1)->List[AnyStr]:pass@abstractmethoddefseek(self,offset:int,whence:int=0)->int:pass@abstractmethoddefseekable(self)->bool:pass@abstractmethoddeftell(self)->int:pass@abstractmethoddeftruncate(self,size:int=None)->int:pass@abstractmethoddefwritable(self)->bool:pass@abstractmethoddefwrite(self,s:AnyStr)->int:pass@abstractmethoddefwritelines(self,lines:List[AnyStr])->None:pass@abstractmethoddef__enter__(self)->'IO[AnyStr]':pass@abstractmethoddef__exit__(self,type,value,traceback)->None:passclassBinaryIO(IO[bytes]):"""Typed version of the return of open() in binary mode."""__slots__=()@abstractmethoddefwrite(self,s:Union[bytes,bytearray])->int:pass@abstractmethoddef__enter__(self)->'BinaryIO':passclassTextIO(IO[str]):"""Typed version of the return of open() in text mode."""__slots__=()@abstractpropertydefbuffer(self)->BinaryIO:pass@abstractpropertydefencoding(self)->str:pass@abstractpropertydeferrors(self)->Optional[str]:pass@abstractpropertydefline_buffering(self)->bool:pass@abstractpropertydefnewlines(self)->Any:pass@abstractmethoddef__enter__(self)->'TextIO':passclassio:"""Wrapper namespace for IO generic classes."""__all__=['IO','TextIO','BinaryIO']IO=IOTextIO=TextIOBinaryIO=BinaryIOio.__name__=__name__+'.io'sys.modules[io.__name__]=ioPattern=_alias(stdlib_re.Pattern,AnyStr)Match=_alias(stdlib_re.Match,AnyStr)classre:"""Wrapper namespace for re type aliases."""__all__=['Pattern','Match']Pattern=PatternMatch=Matchre.__name__=__name__+'.re'sys.modules[re.__name__]=re
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.