Shortcuts

Source code for torch.backends.cuda

import sys
import torch


[docs]def is_built(): r"""Returns whether PyTorch is built with CUDA support. Note that this doesn't necessarily mean CUDA is available; just that if this PyTorch binary were run a machine with working CUDA drivers and devices, we would be able to use it.""" return torch._C.has_cuda
class cuFFTPlanCacheAttrContextProp(object): # Like regular ContextProp, but uses the `.device_index` attribute from the # calling object as the first argument to the getter and setter. def __init__(self, getter, setter): self.getter = getter self.setter = setter def __get__(self, obj, objtype): return self.getter(obj.device_index) def __set__(self, obj, val): if isinstance(self.setter, str): raise RuntimeError(self.setter) self.setter(obj.device_index, val) class cuFFTPlanCache(object): r""" Represents a specific plan cache for a specific `device_index`. The attributes `size` and `max_size`, and method `clear`, can fetch and/ or change properties of the C++ cuFFT plan cache. """ def __init__(self, device_index): self.device_index = device_index size = cuFFTPlanCacheAttrContextProp( torch._cufft_get_plan_cache_size, '.size is a read-only property showing the number of plans currently in the ' 'cache. To change the cache capacity, set cufft_plan_cache.max_size.') max_size = cuFFTPlanCacheAttrContextProp(torch._cufft_get_plan_cache_max_size, torch._cufft_set_plan_cache_max_size) def clear(self): return torch._cufft_clear_plan_cache(self.device_index) class cuFFTPlanCacheManager(object): r""" Represents all cuFFT plan caches. When indexed with a device object/index, this object returns the `cuFFTPlanCache` corresponding to that device. Finally, this object, when used directly as a `cuFFTPlanCache` object (e.g., setting the `.max_size`) attribute, the current device's cuFFT plan cache is used. """ __initialized = False def __init__(self): self.caches = [] self.__initialized = True def __getitem__(self, device): index = torch.cuda._utils._get_device_index(device) if index < 0 or index >= torch.cuda.device_count(): raise RuntimeError( ("cufft_plan_cache: expected 0 <= device index < {}, but got " "device with index {}").format(torch.cuda.device_count(), index)) if len(self.caches) == 0: self.caches.extend(cuFFTPlanCache(index) for index in range(torch.cuda.device_count())) return self.caches[index] def __getattr__(self, name): return getattr(self[torch.cuda.current_device()], name) def __setattr__(self, name, value): if self.__initialized: return setattr(self[torch.cuda.current_device()], name, value) else: return super(cuFFTPlanCacheManager, self).__setattr__(name, value) class cuBLASModule: def __getattr__(self, name): assert name == "allow_tf32", "Unknown attribute " + name return torch._C._get_cublas_allow_tf32() def __setattr__(self, name, value): assert name == "allow_tf32", "Unknown attribute " + name return torch._C._set_cublas_allow_tf32(value) cufft_plan_cache = cuFFTPlanCacheManager() matmul = cuBLASModule()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources