Demultiplexer
- class torchdata.datapipes.iter.Demultiplexer(datapipe: IterDataPipe, num_instances: int, classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool = False, buffer_size: int = 1000)
Splits the input DataPipe into multiple child DataPipes, using the given classification function (functional name:
demux
). A list of the child DataPipes is returned from this operation.- Parameters:
datapipe – Iterable DataPipe being filtered
num_instances – number of instances of the DataPipe to create
classifier_fn – a function that maps values to an integer within the range
[0, num_instances - 1]
orNone
drop_none – defaults to
False
, ifTrue
, the function will skip over elements classified asNone
buffer_size – this defines the maximum number of inputs that the buffer can hold across all child DataPipes while waiting for their values to be yielded. Defaults to
1000
. Use-1
for the unlimited buffer.
Examples
>>> # xdoctest: +REQUIRES(module:torchdata) >>> from torchdata.datapipes.iter import IterableWrapper >>> def odd_or_even(n): ... return n % 2 >>> source_dp = IterableWrapper(range(5)) >>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even) >>> list(dp1) [0, 2, 4] >>> list(dp2) [1, 3] >>> # It can also filter out any element that gets `None` from the `classifier_fn` >>> def odd_or_even_no_zero(n): ... return n % 2 if n != 0 else None >>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even_no_zero, drop_none=True) >>> list(dp1) [2, 4] >>> list(dp2) [1, 3]