SequenceWrapper¶
- class torchdata.datapipes.map.SequenceWrapper(sequence, deepcopy=True)¶
Wraps a sequence object into a MapDataPipe.
- Parameters:
sequence – Sequence object to be wrapped into an MapDataPipe
deepcopy – Option to deepcopy input sequence object
Note
If
deepcopy
is set to False explicitly, users should ensure that data pipeline doesn’t contain any in-place operations over the iterable instance, in order to prevent data inconsistency across iterations.Example
>>> # xdoctest: +SKIP >>> from torchdata.datapipes.map import SequenceWrapper >>> dp = SequenceWrapper(range(10)) >>> list(dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> dp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400}) >>> dp['a'] 100