Shortcuts

IterableWrapper

class torchdata.datapipes.iter.IterableWrapper(iterable, deepcopy=True)

Wraps an iterable object to create an IterDataPipe.

Parameters:
  • iterable – Iterable object to be wrapped into an IterDataPipe

  • deepcopy – Option to deepcopy input iterable object for each iterator. The copy is made when the first element is read in iter().

Note

If deepcopy is explicitly set to False, users should ensure that the data pipeline doesn’t contain any in-place operations over the iterable instance to prevent data inconsistency across iterations.

Example

>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(10))
>>> list(dp)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources