InBatchShuffler¶
- class torchdata.datapipes.iter.InBatchShuffler(datapipe: IterDataPipe[DataChunk[T_co]])¶
Shuffles each mini-batch from the prior DataPipe (functional name:
in_batch_shuffle
).- Parameters:
datapipe – Iterable DataPipe with batched data
Example
>>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(10)) >>> batch_dp = source_dp.batch(batch_size=3, drop_last=True) >>> list(batch_dp) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> in_batch_shuffle_dp = batch_dp.in_batch_shuffle() >>> list(in_batch_shuffle_dp) [[2, 0, 1], [3, 5, 4], [7, 8, 6]]