Source code for torchaudio.models.deepspeech
import torch
__all__ = ["DeepSpeech"]
class FullyConnected(torch.nn.Module):
"""
Args:
n_feature: Number of input features
n_hidden: Internal hidden unit size.
"""
def __init__(self,
n_feature: int,
n_hidden: int,
dropout: float,
relu_max_clip: int = 20) -> None:
super(FullyConnected, self).__init__()
self.fc = torch.nn.Linear(n_feature, n_hidden, bias=True)
self.relu_max_clip = relu_max_clip
self.dropout = dropout
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc(x)
x = torch.nn.functional.relu(x)
x = torch.nn.functional.hardtanh(x, 0, self.relu_max_clip)
if self.dropout:
x = torch.nn.functional.dropout(x, self.dropout, self.training)
return x
[docs]class DeepSpeech(torch.nn.Module):
"""
DeepSpeech model architecture from :footcite:`hannun2014deep`.
Args:
n_feature: Number of input features
n_hidden: Internal hidden unit size.
n_class: Number of output classes
"""
def __init__(
self,
n_feature: int,
n_hidden: int = 2048,
n_class: int = 40,
dropout: float = 0.0,
) -> None:
super(DeepSpeech, self).__init__()
self.n_hidden = n_hidden
self.fc1 = FullyConnected(n_feature, n_hidden, dropout)
self.fc2 = FullyConnected(n_hidden, n_hidden, dropout)
self.fc3 = FullyConnected(n_hidden, n_hidden, dropout)
self.bi_rnn = torch.nn.RNN(
n_hidden, n_hidden, num_layers=1, nonlinearity="relu", bidirectional=True
)
self.fc4 = FullyConnected(n_hidden, n_hidden, dropout)
self.out = torch.nn.Linear(n_hidden, n_class)
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (torch.Tensor): Tensor of dimension (batch, channel, time, feature).
Returns:
Tensor: Predictor tensor of dimension (batch, time, class).
"""
# N x C x T x F
x = self.fc1(x)
# N x C x T x H
x = self.fc2(x)
# N x C x T x H
x = self.fc3(x)
# N x C x T x H
x = x.squeeze(1)
# N x T x H
x = x.transpose(0, 1)
# T x N x H
x, _ = self.bi_rnn(x)
# The fifth (non-recurrent) layer takes both the forward and backward units as inputs
x = x[:, :, :self.n_hidden] + x[:, :, self.n_hidden:]
# T x N x H
x = self.fc4(x)
# T x N x H
x = self.out(x)
# T x N x n_class
x = x.permute(1, 0, 2)
# N x T x n_class
x = torch.nn.functional.log_softmax(x, dim=2)
# N x T x n_class
return x