Shortcuts

Source code for torchaudio.backend.sox_backend

import os.path
from typing import Any, Optional, Tuple

import torch
from torch import Tensor

from torchaudio._internal import (
    module_utils as _mod_utils,
    misc_ops as _misc_ops,
)
from . import common
from .common import SignalInfo, EncodingInfo

if _mod_utils.is_module_available('torchaudio._torchaudio'):
    from torchaudio import _torchaudio


[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @common._impl_load def load(filepath: str, out: Optional[Tensor] = None, normalization: bool = True, channels_first: bool = True, num_frames: int = 0, offset: int = 0, signalinfo: SignalInfo = None, encodinginfo: EncodingInfo = None, filetype: Optional[str] = None) -> Tuple[Tensor, int]: r"""See torchaudio.load""" # stringify if `pathlib.Path` (noop if already `str`) filepath = str(filepath) # check if valid file if not os.path.isfile(filepath): raise OSError("{} not found or is a directory".format(filepath)) # initialize output tensor if out is not None: _misc_ops.check_input(out) else: out = torch.FloatTensor() if num_frames < -1: raise ValueError("Expected value for num_samples -1 (entire file) or >=0") if offset < 0: raise ValueError("Expected positive offset value") sample_rate = _torchaudio.read_audio_file( filepath, out, channels_first, num_frames, offset, signalinfo, encodinginfo, filetype ) # normalize if needed _misc_ops.normalize_audio(out, normalization) return out, sample_rate
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated('Please use "torchaudio.load".', '0.9.0') @common._impl_load_wav def load_wav(filepath, **kwargs): kwargs['normalization'] = 1 << 16 return load(filepath, **kwargs)
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @common._impl_save def save(filepath: str, src: Tensor, sample_rate: int, precision: int = 16, channels_first: bool = True) -> None: r"""See torchaudio.save""" si = sox_signalinfo_t() ch_idx = 0 if channels_first else 1 si.rate = sample_rate si.channels = 1 if src.dim() == 1 else src.size(ch_idx) si.length = src.numel() si.precision = precision return save_encinfo(filepath, src, channels_first, si)
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @common._impl_info def info(filepath: str) -> Tuple[SignalInfo, EncodingInfo]: r"""See torchaudio.info""" return _torchaudio.get_info(filepath)
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated( 'Please migrate to "sox_io" backend. See https://github.com/pytorch/audio/issues/903 for the detail', '0.9.0') def save_encinfo(filepath: str, src: Tensor, channels_first: bool = True, signalinfo: Optional[SignalInfo] = None, encodinginfo: Optional[EncodingInfo] = None, filetype: Optional[str] = None) -> None: r"""Saves a tensor of an audio signal to disk as a standard format like mp3, wav, etc. Args: filepath (str): Path to audio file src (Tensor): An input 2D tensor of shape `[C x L]` or `[L x C]` where L is the number of audio frames, C is the number of channels channels_first (bool, optional): Set channels first or length first in result. (Default: ``True``) signalinfo (sox_signalinfo_t, optional): A sox_signalinfo_t type, which could be helpful if the audio type cannot be automatically determined (Default: ``None``). encodinginfo (sox_encodinginfo_t, optional): A sox_encodinginfo_t type, which could be set if the audio type cannot be automatically determined (Default: ``None``). filetype (str, optional): A filetype or extension to be set if sox cannot determine it automatically. (Default: ``None``) Example >>> data, sample_rate = torchaudio.load('foo.mp3') >>> torchaudio.save('foo.wav', data, sample_rate) """ ch_idx, len_idx = (0, 1) if channels_first else (1, 0) # check if save directory exists abs_dirpath = os.path.dirname(os.path.abspath(filepath)) if not os.path.isdir(abs_dirpath): raise OSError("Directory does not exist: {}".format(abs_dirpath)) # check that src is a CPU tensor _misc_ops.check_input(src) # Check/Fix shape of source data if src.dim() == 1: # 1d tensors as assumed to be mono signals src.unsqueeze_(ch_idx) elif src.dim() > 2 or src.size(ch_idx) > 16: # assumes num_channels < 16 raise ValueError( "Expected format where C < 16, but found {}".format(src.size())) # sox stores the sample rate as a float, though practically sample rates are almost always integers # convert integers to floats if signalinfo: if signalinfo.rate and not isinstance(signalinfo.rate, float): if float(signalinfo.rate) == signalinfo.rate: signalinfo.rate = float(signalinfo.rate) else: raise TypeError('Sample rate should be a float or int') # check if the bit precision (i.e. bits per sample) is an integer if signalinfo.precision and not isinstance(signalinfo.precision, int): if int(signalinfo.precision) == signalinfo.precision: signalinfo.precision = int(signalinfo.precision) else: raise TypeError('Bit precision should be an integer') # programs such as librosa normalize the signal, unnormalize if detected if src.min() >= -1.0 and src.max() <= 1.0: src = src * (1 << 31) src = src.long() # set filetype and allow for files with no extensions extension = os.path.splitext(filepath)[1] filetype = extension[1:] if len(extension) > 0 else filetype # transpose from C x L -> L x C if channels_first: src = src.transpose(1, 0) # save data to file src = src.contiguous() _torchaudio.write_audio_file(filepath, src, signalinfo, encodinginfo, filetype)
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated( 'Please migrate to "sox_io" backend. See https://github.com/pytorch/audio/issues/903 for the detail', '0.9.0') def sox_signalinfo_t() -> SignalInfo: r"""Create a sox_signalinfo_t object. This object can be used to set the sample rate, number of channels, length, bit precision and headroom multiplier primarily for effects Returns: sox_signalinfo_t(object) - rate (float), sample rate as a float, practically will likely be an integer float - channel (int), number of audio channels - precision (int), bit precision - length (int), length of audio in samples * channels, 0 for unspecified and -1 for unknown - mult (float, optional), headroom multiplier for effects and ``None`` for no multiplier Example >>> si = torchaudio.sox_signalinfo_t() >>> si.channels = 1 >>> si.rate = 16000. >>> si.precision = 16 >>> si.length = 0 """ return _torchaudio.sox_signalinfo_t()
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated( 'Please migrate to "sox_io" backend. See https://github.com/pytorch/audio/issues/903 for the detail', '0.9.0') def sox_encodinginfo_t() -> EncodingInfo: r"""Create a sox_encodinginfo_t object. This object can be used to set the encoding type, bit precision, compression factor, reverse bytes, reverse nibbles, reverse bits and endianness. This can be used in an effects chain to encode the final output or to save a file with a specific encoding. For example, one could use the sox ulaw encoding to do 8-bit ulaw encoding. Note in a tensor output the result will be a 32-bit number, but number of unique values will be determined by the bit precision. Returns: sox_encodinginfo_t(object) - encoding (sox_encoding_t), output encoding - bits_per_sample (int), bit precision, same as `precision` in sox_signalinfo_t - compression (float), compression for lossy formats, 0.0 for default compression - reverse_bytes (sox_option_t), reverse bytes, use sox_option_default - reverse_nibbles (sox_option_t), reverse nibbles, use sox_option_default - reverse_bits (sox_option_t), reverse bytes, use sox_option_default - opposite_endian (sox_bool), change endianness, use sox_false Example >>> ei = torchaudio.sox_encodinginfo_t() >>> ei.encoding = torchaudio.get_sox_encoding_t(1) >>> ei.bits_per_sample = 16 >>> ei.compression = 0 >>> ei.reverse_bytes = torchaudio.get_sox_option_t(2) >>> ei.reverse_nibbles = torchaudio.get_sox_option_t(2) >>> ei.reverse_bits = torchaudio.get_sox_option_t(2) >>> ei.opposite_endian = torchaudio.get_sox_bool(0) """ ei = _torchaudio.sox_encodinginfo_t() sdo = get_sox_option_t(2) # sox_default_option ei.reverse_bytes = sdo ei.reverse_nibbles = sdo ei.reverse_bits = sdo return ei
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated( 'Please migrate to "sox_io" backend. See https://github.com/pytorch/audio/issues/903 for the detail', '0.9.0') def get_sox_encoding_t(i: int = None) -> EncodingInfo: r"""Get enum of sox_encoding_t for sox encodings. Args: i (int, optional): Choose type or get a dict with all possible options use ``__members__`` to see all options when not specified. (Default: ``None``) Returns: sox_encoding_t: A sox_encoding_t type for output encoding """ if i is None: # one can see all possible values using the .__members__ attribute return _torchaudio.sox_encoding_t else: return _torchaudio.sox_encoding_t(i)
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated( 'Please migrate to "sox_io" backend. See https://github.com/pytorch/audio/issues/903 for the detail', '0.9.0') def get_sox_option_t(i: int = 2) -> Any: r"""Get enum of sox_option_t for sox encodinginfo options. Args: i (int, optional): Choose type or get a dict with all possible options use ``__members__`` to see all options when not specified. (Default: ``sox_option_default`` or ``2``) Returns: sox_option_t: A sox_option_t type """ if i is None: return _torchaudio.sox_option_t else: return _torchaudio.sox_option_t(i)
[docs]@_mod_utils.requires_module('torchaudio._torchaudio') @_mod_utils.deprecated( 'Please migrate to "sox_io" backend. See https://github.com/pytorch/audio/issues/903 for the detail', '0.9.0') def get_sox_bool(i: int = 0) -> Any: r"""Get enum of sox_bool for sox encodinginfo options. Args: i (int, optional): Choose type or get a dict with all possible options use ``__members__`` to see all options when not specified. (Default: ``sox_false`` or ``0``) Returns: sox_bool: A sox_bool type """ if i is None: return _torchaudio.sox_bool else: return _torchaudio.sox_bool(i)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources