Shortcuts

Source code for torchaudio.functional

# -*- coding: utf-8 -*-

import math
from typing import Optional, Tuple
import warnings

import torch
from torch import Tensor

__all__ = [
    "spectrogram",
    "griffinlim",
    "amplitude_to_DB",
    "create_fb_matrix",
    "create_dct",
    "mu_law_encoding",
    "mu_law_decoding",
    "complex_norm",
    "angle",
    "magphase",
    "phase_vocoder",
    "lfilter",
    "lowpass_biquad",
    "highpass_biquad",
    "allpass_biquad",
    "bandpass_biquad",
    "bandreject_biquad",
    "equalizer_biquad",
    "band_biquad",
    "treble_biquad",
    "bass_biquad",
    "deemph_biquad",
    "riaa_biquad",
    "biquad",
    "contrast",
    "dcshift",
    "overdrive",
    "phaser",
    "flanger",
    'mask_along_axis',
    'mask_along_axis_iid',
    'sliding_window_cmn',
    'vad',
]


[docs]def spectrogram( waveform: Tensor, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: Optional[float], normalized: bool ) -> Tensor: r"""Create a spectrogram or a batch of spectrograms from a raw audio signal. The spectrogram can be either magnitude-only or complex. Args: waveform (Tensor): Tensor of audio of dimension (..., time) pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size power (float or None): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. If None, then the complex spectrum is returned instead. normalized (bool): Whether to normalize by magnitude after stft Returns: Tensor: Dimension (..., freq, time), freq is ``n_fft // 2 + 1`` and ``n_fft`` is the number of Fourier bins, and time is the number of window hops (n_frame). """ if pad > 0: # TODO add "with torch.no_grad():" back when JIT supports it waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant") # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) # default values are consistent with librosa.core.spectrum._spectrogram spec_f = torch.stft( waveform, n_fft, hop_length, win_length, window, True, "reflect", False, True ) # unpack batch spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-3:]) if normalized: spec_f /= window.pow(2.).sum().sqrt() if power is not None: spec_f = complex_norm(spec_f, power=power) return spec_f
def griffinlim( specgram: Tensor, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: float, normalized: bool, n_iter: int, momentum: float, length: Optional[int], rand_init: bool ) -> Tensor: r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation. Implementation ported from `librosa`. .. [1] McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. "librosa: Audio and music signal analysis in python." In Proceedings of the 14th python in science conference, pp. 18-25. 2015. .. [2] Perraudin, N., Balazs, P., & Søndergaard, P. L. "A fast Griffin-Lim algorithm," IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), Oct. 2013. .. [3] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. Args: specgram (Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames) where freq is ``n_fft // 2 + 1``. window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins hop_length (int): Length of hop between STFT windows. ( Default: ``win_length // 2``) win_length (int): Window size. (Default: ``n_fft``) power (float): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. normalized (bool): Whether to normalize by magnitude after stft. n_iter (int): Number of iteration for phase recovery process. momentum (float): The momentum parameter for fast Griffin-Lim. Setting this to 0 recovers the original Griffin-Lim method. Values near 1 can lead to faster convergence, but above 1 may not converge. length (int or None): Array length of the expected output. rand_init (bool): Initializes phase randomly if True, to zero otherwise. Returns: torch.Tensor: waveform of (..., time), where time equals the ``length`` parameter if given. """ assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum) assert momentum >= 0, 'momentum={} < 0'.format(momentum) # pack batch shape = specgram.size() specgram = specgram.reshape([-1] + list(shape[-2:])) specgram = specgram.pow(1 / power) # randomly initialize the phase batch, freq, frames = specgram.size() if rand_init: angles = 2 * math.pi * torch.rand(batch, freq, frames) else: angles = torch.zeros(batch, freq, frames) angles = torch.stack([angles.cos(), angles.sin()], dim=-1) \ .to(dtype=specgram.dtype, device=specgram.device) specgram = specgram.unsqueeze(-1).expand_as(angles) # And initialize the previous iterate to 0 rebuilt = torch.tensor(0.) for _ in range(n_iter): # Store the previous iterate tprev = rebuilt # Invert with our current estimate of the phases inverse = torch.istft(specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length).float() # Rebuild the spectrogram rebuilt = torch.stft(inverse, n_fft, hop_length, win_length, window, True, 'reflect', False, True) # Update our phase estimates angles = rebuilt if momentum: angles = angles - tprev.mul_(momentum / (1 + momentum)) angles = angles.div(complex_norm(angles).add(1e-16).unsqueeze(-1).expand_as(angles)) # Return the final phase estimates waveform = torch.istft(specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length) # unpack batch waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:]) return waveform
[docs]def amplitude_to_DB( x: Tensor, multiplier: float, amin: float, db_multiplier: float, top_db: Optional[float] = None ) -> Tensor: r"""Turn a tensor from the power/amplitude scale to the decibel scale. This output depends on the maximum value in the input tensor, and so may return different values for an audio clip split into snippets vs. a a full clip. Args: x (Tensor): Input tensor before being converted to decibel scale multiplier (float): Use 10. for power and 20. for amplitude amin (float): Number to clamp ``x`` db_multiplier (float): Log10(max(reference value and amin)) top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number is 80. (Default: ``None``) Returns: Tensor: Output tensor in decibel scale """ x_db = multiplier * torch.log10(torch.clamp(x, min=amin)) x_db -= multiplier * db_multiplier if top_db is not None: x_db = x_db.clamp(min=x_db.max().item() - top_db) return x_db
def DB_to_amplitude( x: Tensor, ref: float, power: float ) -> Tensor: r"""Turn a tensor from the decibel scale to the power/amplitude scale. Args: x (Tensor): Input tensor before being converted to power/amplitude scale. ref (float): Reference which the output will be scaled by. power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude. Returns: Tensor: Output tensor in power/amplitude scale. """ return ref * torch.pow(torch.pow(10.0, 0.1 * x), power)
[docs]def create_fb_matrix( n_freqs: int, f_min: float, f_max: float, n_mels: int, sample_rate: int, norm: Optional[str] = None ) -> Tensor: r"""Create a frequency bin conversion matrix. Args: n_freqs (int): Number of frequencies to highlight/apply f_min (float): Minimum frequency (Hz) f_max (float): Maximum frequency (Hz) n_mels (int): Number of mel filterbanks sample_rate (int): Sample rate of the audio waveform norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). (Default: ``None``) Returns: Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``) meaning number of frequencies to highlight/apply to x the number of filterbanks. Each column is a filterbank so that assuming there is a matrix A of size (..., ``n_freqs``), the applied result would be ``A * create_fb_matrix(A.size(-1), ...)``. """ if norm is not None and norm != "slaney": raise ValueError("norm must be one of None or 'slaney'") # freq bins # Equivalent filterbank construction by Librosa all_freqs = torch.linspace(0, sample_rate // 2, n_freqs) # calculate mel freq bins # hertz to mel(f) is 2595. * math.log10(1. + (f / 700.)) m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0)) m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0)) m_pts = torch.linspace(m_min, m_max, n_mels + 2) # mel to hertz(mel) is 700. * (10**(mel / 2595.) - 1.) f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0) # calculate the difference between each mel point and each stft freq point in hertz f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1) slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_mels + 2) # create overlapping triangles zero = torch.zeros(1) down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels) up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels) fb = torch.max(zero, torch.min(down_slopes, up_slopes)) if norm is not None and norm == "slaney": # Slaney-style mel is scaled to be approx constant energy per channel enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels]) fb *= enorm.unsqueeze(0) if (fb.max(dim=0).values == 0.).any(): warnings.warn( "At least one mel filterbank has all zero values. " f"The value for `n_mels` ({n_mels}) may be set too high. " f"Or, the value for `n_freqs` ({n_freqs}) may be set too low." ) return fb
[docs]def create_dct( n_mfcc: int, n_mels: int, norm: Optional[str] ) -> Tensor: r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``), normalized depending on norm. Args: n_mfcc (int): Number of mfc coefficients to retain n_mels (int): Number of mel filterbanks norm (str or None): Norm to use (either 'ortho' or None) Returns: Tensor: The transformation matrix, to be right-multiplied to row-wise data of size (``n_mels``, ``n_mfcc``). """ # http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II n = torch.arange(float(n_mels)) k = torch.arange(float(n_mfcc)).unsqueeze(1) dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels) if norm is None: dct *= 2.0 else: assert norm == "ortho" dct[0] *= 1.0 / math.sqrt(2.0) dct *= math.sqrt(2.0 / float(n_mels)) return dct.t()
[docs]def mu_law_encoding( x: Tensor, quantization_channels: int ) -> Tensor: r"""Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1. Args: x (Tensor): Input tensor quantization_channels (int): Number of channels Returns: Tensor: Input after mu-law encoding """ mu = quantization_channels - 1.0 if not x.is_floating_point(): x = x.to(torch.float) mu = torch.tensor(mu, dtype=x.dtype) x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu) x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64) return x_mu
[docs]def mu_law_decoding( x_mu: Tensor, quantization_channels: int ) -> Tensor: r"""Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: x_mu (Tensor): Input tensor quantization_channels (int): Number of channels Returns: Tensor: Input after mu-law decoding """ mu = quantization_channels - 1.0 if not x_mu.is_floating_point(): x_mu = x_mu.to(torch.float) mu = torch.tensor(mu, dtype=x_mu.dtype) x = ((x_mu) / mu) * 2 - 1.0 x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu return x
[docs]def complex_norm( complex_tensor: Tensor, power: float = 1.0 ) -> Tensor: r"""Compute the norm of complex tensor input. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` power (float): Power of the norm. (Default: `1.0`). Returns: Tensor: Power of the normed input tensor. Shape of `(..., )` """ # Replace by torch.norm once issue is fixed # https://github.com/pytorch/pytorch/issues/34279 return complex_tensor.pow(2.).sum(-1).pow(0.5 * power)
[docs]def angle( complex_tensor: Tensor ) -> Tensor: r"""Compute the angle of complex tensor input. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` Return: Tensor: Angle of a complex tensor. Shape of `(..., )` """ return torch.atan2(complex_tensor[..., 1], complex_tensor[..., 0])
[docs]def magphase( complex_tensor: Tensor, power: float = 1.0 ) -> Tuple[Tensor, Tensor]: r"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase. Args: complex_tensor (Tensor): Tensor shape of `(..., complex=2)` power (float): Power of the norm. (Default: `1.0`) Returns: (Tensor, Tensor): The magnitude and phase of the complex tensor """ mag = complex_norm(complex_tensor, power) phase = angle(complex_tensor) return mag, phase
[docs]def phase_vocoder( complex_specgrams: Tensor, rate: float, phase_advance: Tensor ) -> Tensor: r"""Given a STFT tensor, speed up in time without modifying pitch by a factor of ``rate``. Args: complex_specgrams (Tensor): Dimension of `(..., freq, time, complex=2)` rate (float): Speed-up factor phase_advance (Tensor): Expected phase advance in each bin. Dimension of (freq, 1) Returns: Tensor: Complex Specgrams Stretch with dimension of `(..., freq, ceil(time/rate), complex=2)` Example >>> freq, hop_length = 1025, 512 >>> # (channel, freq, time, complex=2) >>> complex_specgrams = torch.randn(2, freq, 300, 2) >>> rate = 1.3 # Speed up by 30% >>> phase_advance = torch.linspace( >>> 0, math.pi * hop_length, freq)[..., None] >>> x = phase_vocoder(complex_specgrams, rate, phase_advance) >>> x.shape # with 231 == ceil(300 / 1.3) torch.Size([2, 1025, 231, 2]) """ # pack batch shape = complex_specgrams.size() complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-3:])) time_steps = torch.arange(0, complex_specgrams.size(-2), rate, device=complex_specgrams.device, dtype=complex_specgrams.dtype) alphas = time_steps % 1.0 phase_0 = angle(complex_specgrams[..., :1, :]) # Time Padding complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 0, 0, 2]) # (new_bins, freq, 2) complex_specgrams_0 = complex_specgrams.index_select(-2, time_steps.long()) complex_specgrams_1 = complex_specgrams.index_select(-2, (time_steps + 1).long()) angle_0 = angle(complex_specgrams_0) angle_1 = angle(complex_specgrams_1) norm_0 = torch.norm(complex_specgrams_0, p=2, dim=-1) norm_1 = torch.norm(complex_specgrams_1, p=2, dim=-1) phase = angle_1 - angle_0 - phase_advance phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi)) # Compute Phase Accum phase = phase + phase_advance phase = torch.cat([phase_0, phase[..., :-1]], dim=-1) phase_acc = torch.cumsum(phase, -1) mag = alphas * norm_1 + (1 - alphas) * norm_0 real_stretch = mag * torch.cos(phase_acc) imag_stretch = mag * torch.sin(phase_acc) complex_specgrams_stretch = torch.stack([real_stretch, imag_stretch], dim=-1) # unpack batch complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-3] + complex_specgrams_stretch.shape[1:]) return complex_specgrams_stretch
[docs]def lfilter( waveform: Tensor, a_coeffs: Tensor, b_coeffs: Tensor, clamp: bool = True, ) -> Tensor: r"""Perform an IIR filter by evaluating difference equation. Args: waveform (Tensor): audio waveform of dimension of ``(..., time)``. Must be normalized to -1 to 1. a_coeffs (Tensor): denominator coefficients of difference equation of dimension of ``(n_order + 1)``. Lower delays coefficients are first, e.g. ``[a0, a1, a2, ...]``. Must be same size as b_coeffs (pad with 0's as necessary). b_coeffs (Tensor): numerator coefficients of difference equation of dimension of ``(n_order + 1)``. Lower delays coefficients are first, e.g. ``[b0, b1, b2, ...]``. Must be same size as a_coeffs (pad with 0's as necessary). clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1] (Default: ``True``) Returns: Tensor: Waveform with dimension of ``(..., time)``. """ # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) assert (a_coeffs.size(0) == b_coeffs.size(0)) assert (len(waveform.size()) == 2) assert (waveform.device == a_coeffs.device) assert (b_coeffs.device == a_coeffs.device) device = waveform.device dtype = waveform.dtype n_channel, n_sample = waveform.size() n_order = a_coeffs.size(0) n_sample_padded = n_sample + n_order - 1 assert (n_order > 0) # Pad the input and create output padded_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device) padded_waveform[:, (n_order - 1):] = waveform padded_output_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device) # Set up the coefficients matrix # Flip coefficients' order a_coeffs_flipped = a_coeffs.flip(0) b_coeffs_flipped = b_coeffs.flip(0) # calculate windowed_input_signal in parallel # create indices of original with shape (n_channel, n_order, n_sample) window_idxs = torch.arange(n_sample, device=device).unsqueeze(0) + torch.arange(n_order, device=device).unsqueeze(1) window_idxs = window_idxs.repeat(n_channel, 1, 1) window_idxs += (torch.arange(n_channel, device=device).unsqueeze(-1).unsqueeze(-1) * n_sample_padded) window_idxs = window_idxs.long() # (n_order, ) matmul (n_channel, n_order, n_sample) -> (n_channel, n_sample) input_signal_windows = torch.matmul(b_coeffs_flipped, torch.take(padded_waveform, window_idxs)) input_signal_windows.div_(a_coeffs[0]) a_coeffs_flipped.div_(a_coeffs[0]) for i_sample, o0 in enumerate(input_signal_windows.t()): windowed_output_signal = padded_output_waveform[:, i_sample:(i_sample + n_order)] o0.addmv_(windowed_output_signal, a_coeffs_flipped, alpha=-1) padded_output_waveform[:, i_sample + n_order - 1] = o0 output = padded_output_waveform[:, (n_order - 1):] if clamp: output = torch.clamp(output, min=-1., max=1.) # unpack batch output = output.reshape(shape[:-1] + output.shape[-1:]) return output
[docs]def biquad( waveform: Tensor, b0: float, b1: float, b2: float, a0: float, a1: float, a2: float ) -> Tensor: r"""Perform a biquad filter of input tensor. Initial conditions set to 0. https://en.wikipedia.org/wiki/Digital_biquad_filter Args: waveform (Tensor): audio waveform of dimension of `(..., time)` b0 (float): numerator coefficient of current input, x[n] b1 (float): numerator coefficient of input one time step ago x[n-1] b2 (float): numerator coefficient of input two time steps ago x[n-2] a0 (float): denominator coefficient of current output y[n], typically 1 a1 (float): denominator coefficient of current output y[n-1] a2 (float): denominator coefficient of current output y[n-2] Returns: Tensor: Waveform with dimension of `(..., time)` """ device = waveform.device dtype = waveform.dtype output_waveform = lfilter( waveform, torch.tensor([a0, a1, a2], dtype=dtype, device=device), torch.tensor([b0, b1, b2], dtype=dtype, device=device) ) return output_waveform
def _dB2Linear(x: float) -> float: return math.exp(x * math.log(10) / 20.0)
[docs]def highpass_biquad( waveform: Tensor, sample_rate: int, cutoff_freq: float, Q: float = 0.707 ) -> Tensor: r"""Design biquad highpass filter and perform filtering. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) cutoff_freq (float): filter cutoff frequency Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``) Returns: Tensor: Waveform dimension of `(..., time)` """ w0 = 2 * math.pi * cutoff_freq / sample_rate alpha = math.sin(w0) / 2. / Q b0 = (1 + math.cos(w0)) / 2 b1 = -1 - math.cos(w0) b2 = b0 a0 = 1 + alpha a1 = -2 * math.cos(w0) a2 = 1 - alpha return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def lowpass_biquad( waveform: Tensor, sample_rate: int, cutoff_freq: float, Q: float = 0.707 ) -> Tensor: r"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation. Args: waveform (torch.Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) cutoff_freq (float): filter cutoff frequency Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``) Returns: Tensor: Waveform of dimension of `(..., time)` """ w0 = 2 * math.pi * cutoff_freq / sample_rate alpha = math.sin(w0) / 2 / Q b0 = (1 - math.cos(w0)) / 2 b1 = 1 - math.cos(w0) b2 = b0 a0 = 1 + alpha a1 = -2 * math.cos(w0) a2 = 1 - alpha return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def allpass_biquad( waveform: Tensor, sample_rate: int, central_freq: float, Q: float = 0.707 ) -> Tensor: r"""Design two-pole all-pass filter. Similar to SoX implementation. Args: waveform(torch.Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) central_freq (float): central frequency (in Hz) Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``) Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ w0 = 2 * math.pi * central_freq / sample_rate alpha = math.sin(w0) / 2 / Q b0 = 1 - alpha b1 = -2 * math.cos(w0) b2 = 1 + alpha a0 = 1 + alpha a1 = -2 * math.cos(w0) a2 = 1 - alpha return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def bandpass_biquad( waveform: Tensor, sample_rate: int, central_freq: float, Q: float = 0.707, const_skirt_gain: bool = False ) -> Tensor: r"""Design two-pole band-pass filter. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) central_freq (float): central frequency (in Hz) Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``) const_skirt_gain (bool, optional) : If ``True``, uses a constant skirt gain (peak gain = Q). If ``False``, uses a constant 0dB peak gain. (Default: ``False``) Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ w0 = 2 * math.pi * central_freq / sample_rate alpha = math.sin(w0) / 2 / Q temp = math.sin(w0) / 2 if const_skirt_gain else alpha b0 = temp b1 = 0. b2 = -temp a0 = 1 + alpha a1 = -2 * math.cos(w0) a2 = 1 - alpha return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def bandreject_biquad( waveform: Tensor, sample_rate: int, central_freq: float, Q: float = 0.707 ) -> Tensor: r"""Design two-pole band-reject filter. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) central_freq (float): central frequency (in Hz) Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``) Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ w0 = 2 * math.pi * central_freq / sample_rate alpha = math.sin(w0) / 2 / Q b0 = 1. b1 = -2 * math.cos(w0) b2 = 1. a0 = 1 + alpha a1 = -2 * math.cos(w0) a2 = 1 - alpha return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def equalizer_biquad( waveform: Tensor, sample_rate: int, center_freq: float, gain: float, Q: float = 0.707 ) -> Tensor: r"""Design biquad peaking equalizer filter and perform filtering. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) center_freq (float): filter's central frequency gain (float): desired gain at the boost (or attenuation) in dB Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``) Returns: Tensor: Waveform of dimension of `(..., time)` """ w0 = 2 * math.pi * center_freq / sample_rate A = math.exp(gain / 40.0 * math.log(10)) alpha = math.sin(w0) / 2 / Q b0 = 1 + alpha * A b1 = -2 * math.cos(w0) b2 = 1 - alpha * A a0 = 1 + alpha / A a1 = -2 * math.cos(w0) a2 = 1 - alpha / A return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def band_biquad( waveform: Tensor, sample_rate: int, central_freq: float, Q: float = 0.707, noise: bool = False ) -> Tensor: r"""Design two-pole band filter. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) central_freq (float): central frequency (in Hz) Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``). noise (bool, optional) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion). If ``False``, uses mode oriented to pitched audio, i.e. voice, singing, or instrumental music (Default: ``False``). Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ w0 = 2 * math.pi * central_freq / sample_rate bw_Hz = central_freq / Q a0 = 1. a2 = math.exp(-2 * math.pi * bw_Hz / sample_rate) a1 = -4 * a2 / (1 + a2) * math.cos(w0) b0 = math.sqrt(1 - a1 * a1 / (4 * a2)) * (1 - a2) if noise: mult = math.sqrt(((1 + a2) * (1 + a2) - a1 * a1) * (1 - a2) / (1 + a2)) / b0 b0 *= mult b1 = 0. b2 = 0. return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def treble_biquad( waveform: Tensor, sample_rate: int, gain: float, central_freq: float = 3000, Q: float = 0.707 ) -> Tensor: r"""Design a treble tone-control effect. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) gain (float): desired gain at the boost (or attenuation) in dB. central_freq (float, optional): central frequency (in Hz). (Default: ``3000``) Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``). Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ w0 = 2 * math.pi * central_freq / sample_rate alpha = math.sin(w0) / 2 / Q A = math.exp(gain / 40 * math.log(10)) temp1 = 2 * math.sqrt(A) * alpha temp2 = (A - 1) * math.cos(w0) temp3 = (A + 1) * math.cos(w0) b0 = A * ((A + 1) + temp2 + temp1) b1 = -2 * A * ((A - 1) + temp3) b2 = A * ((A + 1) + temp2 - temp1) a0 = (A + 1) - temp2 + temp1 a1 = 2 * ((A - 1) - temp3) a2 = (A + 1) - temp2 - temp1 return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def bass_biquad( waveform: Tensor, sample_rate: int, gain: float, central_freq: float = 100, Q: float = 0.707 ) -> Tensor: r"""Design a bass tone-control effect. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) gain (float): desired gain at the boost (or attenuation) in dB. central_freq (float, optional): central frequency (in Hz). (Default: ``100``) Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``). Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ w0 = 2 * math.pi * central_freq / sample_rate alpha = math.sin(w0) / 2 / Q A = math.exp(gain / 40 * math.log(10)) temp1 = 2 * math.sqrt(A) * alpha temp2 = (A - 1) * math.cos(w0) temp3 = (A + 1) * math.cos(w0) b0 = A * ((A + 1) - temp2 + temp1) b1 = 2 * A * ((A - 1) - temp3) b2 = A * ((A + 1) - temp2 - temp1) a0 = (A + 1) + temp2 + temp1 a1 = -2 * ((A - 1) + temp3) a2 = (A + 1) + temp2 - temp1 return biquad(waveform, b0 / a0, b1 / a0, b2 / a0, a0 / a0, a1 / a0, a2 / a0)
[docs]def deemph_biquad( waveform: Tensor, sample_rate: int ) -> Tensor: r"""Apply ISO 908 CD de-emphasis (shelving) IIR filter. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, Allowed sample rate ``44100`` or ``48000`` Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ if sample_rate == 44100: central_freq = 5283 width_slope = 0.4845 gain = -9.477 elif sample_rate == 48000: central_freq = 5356 width_slope = 0.479 gain = -9.62 else: raise ValueError("Sample rate must be 44100 (audio-CD) or 48000 (DAT)") w0 = 2 * math.pi * central_freq / sample_rate A = math.exp(gain / 40.0 * math.log(10)) alpha = math.sin(w0) / 2 * math.sqrt((A + 1 / A) * (1 / width_slope - 1) + 2) temp1 = 2 * math.sqrt(A) * alpha temp2 = (A - 1) * math.cos(w0) temp3 = (A + 1) * math.cos(w0) b0 = A * ((A + 1) + temp2 + temp1) b1 = -2 * A * ((A - 1) + temp3) b2 = A * ((A + 1) + temp2 - temp1) a0 = (A + 1) - temp2 + temp1 a1 = 2 * ((A - 1) - temp3) a2 = (A + 1) - temp2 - temp1 return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def riaa_biquad( waveform: Tensor, sample_rate: int ) -> Tensor: r"""Apply RIAA vinyl playback equalisation. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz). Allowed sample rates in Hz : ``44100``,``48000``,``88200``,``96000`` Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF """ if (sample_rate == 44100): zeros = [-0.2014898, 0.9233820] poles = [0.7083149, 0.9924091] elif (sample_rate == 48000): zeros = [-0.1766069, 0.9321590] poles = [0.7396325, 0.9931330] elif (sample_rate == 88200): zeros = [-0.1168735, 0.9648312] poles = [0.8590646, 0.9964002] elif (sample_rate == 96000): zeros = [-0.1141486, 0.9676817] poles = [0.8699137, 0.9966946] else: raise ValueError("Sample rate must be 44.1k, 48k, 88.2k, or 96k") # polynomial coefficients with roots zeros[0] and zeros[1] b0 = 1. b1 = -(zeros[0] + zeros[1]) b2 = (zeros[0] * zeros[1]) # polynomial coefficients with roots poles[0] and poles[1] a0 = 1. a1 = -(poles[0] + poles[1]) a2 = (poles[0] * poles[1]) # Normalise to 0dB at 1kHz y = 2 * math.pi * 1000 / sample_rate b_re = b0 + b1 * math.cos(-y) + b2 * math.cos(-2 * y) a_re = a0 + a1 * math.cos(-y) + a2 * math.cos(-2 * y) b_im = b1 * math.sin(-y) + b2 * math.sin(-2 * y) a_im = a1 * math.sin(-y) + a2 * math.sin(-2 * y) g = 1 / math.sqrt((b_re ** 2 + b_im ** 2) / (a_re ** 2 + a_im ** 2)) b0 *= g b1 *= g b2 *= g return biquad(waveform, b0, b1, b2, a0, a1, a2)
[docs]def contrast( waveform: Tensor, enhancement_amount: float = 75. ) -> Tensor: r"""Apply contrast effect. Similar to SoX implementation. Comparable with compression, this effect modifies an audio signal to make it sound louder Args: waveform (Tensor): audio waveform of dimension of `(..., time)` enhancement_amount (float): controls the amount of the enhancement Allowed range of values for enhancement_amount : 0-100 Note that enhancement_amount = 0 still gives a significant contrast enhancement Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html """ if not 0 <= enhancement_amount <= 100: raise ValueError("Allowed range of values for enhancement_amount : 0-100") contrast = enhancement_amount / 750. temp1 = waveform * (math.pi / 2) temp2 = contrast * torch.sin(temp1 * 4) output_waveform = torch.sin(temp1 + temp2) return output_waveform
[docs]def dcshift( waveform: Tensor, shift: float, limiter_gain: Optional[float] = None ) -> Tensor: r"""Apply a DC shift to the audio. Similar to SoX implementation. This can be useful to remove a DC offset (caused perhaps by a hardware problem in the recording chain) from the audio Args: waveform (Tensor): audio waveform of dimension of `(..., time)` shift (float): indicates the amount to shift the audio Allowed range of values for shift : -2.0 to +2.0 limiter_gain (float): It is used only on peaks to prevent clipping It should have a value much less than 1 (e.g. 0.05 or 0.02) Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html """ output_waveform = waveform limiter_threshold = 0. if limiter_gain is not None: limiter_threshold = 1.0 - (abs(shift) - limiter_gain) if limiter_gain is not None and shift > 0: mask = waveform > limiter_threshold temp = (waveform[mask] - limiter_threshold) * limiter_gain / (1 - limiter_threshold) output_waveform[mask] = (temp + limiter_threshold + shift).clamp(max=limiter_threshold) output_waveform[~mask] = (waveform[~mask] + shift).clamp(min=-1, max=1) elif limiter_gain is not None and shift < 0: mask = waveform < -limiter_threshold temp = (waveform[mask] + limiter_threshold) * limiter_gain / (1 - limiter_threshold) output_waveform[mask] = (temp - limiter_threshold + shift).clamp(min=-limiter_threshold) output_waveform[~mask] = (waveform[~mask] + shift).clamp(min=-1, max=1) else: output_waveform = (waveform + shift).clamp(min=-1, max=1) return output_waveform
[docs]def overdrive( waveform: Tensor, gain: float = 20, colour: float = 20 ) -> Tensor: r"""Apply a overdrive effect to the audio. Similar to SoX implementation. This effect applies a non linear distortion to the audio signal. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` gain (float): desired gain at the boost (or attenuation) in dB Allowed range of values are 0 to 100 colour (float): controls the amount of even harmonic content in the over-driven output Allowed range of values are 0 to 100 Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html """ actual_shape = waveform.shape device, dtype = waveform.device, waveform.dtype # convert to 2D (..,time) waveform = waveform.view(-1, actual_shape[-1]) gain = _dB2Linear(gain) colour = colour / 200 last_in = torch.zeros(waveform.shape[:-1], dtype=dtype, device=device) last_out = torch.zeros(waveform.shape[:-1], dtype=dtype, device=device) temp = waveform * gain + colour mask1 = temp < -1 temp[mask1] = torch.tensor(-2.0 / 3.0, dtype=dtype, device=device) # Wrapping the constant with Tensor is required for Torchscript mask2 = temp > 1 temp[mask2] = torch.tensor(2.0 / 3.0, dtype=dtype, device=device) mask3 = (~mask1 & ~mask2) temp[mask3] = temp[mask3] - (temp[mask3]**3) * (1. / 3) output_waveform = torch.zeros_like(waveform, dtype=dtype, device=device) # TODO: Implement a torch CPP extension for i in range(waveform.shape[-1]): last_out = temp[:, i] - last_in + 0.995 * last_out last_in = temp[:, i] output_waveform[:, i] = waveform[:, i] * 0.5 + last_out * 0.75 return output_waveform.clamp(min=-1, max=1).view(actual_shape)
[docs]def phaser( waveform: Tensor, sample_rate: int, gain_in: float = 0.4, gain_out: float = 0.74, delay_ms: float = 3.0, decay: float = 0.4, mod_speed: float = 0.5, sinusoidal: bool = True ) -> Tensor: r"""Apply a phasing effect to the audio. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., time)` sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) gain_in (float): desired input gain at the boost (or attenuation) in dB Allowed range of values are 0 to 1 gain_out (float): desired output gain at the boost (or attenuation) in dB Allowed range of values are 0 to 1e9 delay_ms (float): desired delay in milli seconds Allowed range of values are 0 to 5.0 decay (float): desired decay relative to gain-in Allowed range of values are 0 to 0.99 mod_speed (float): modulation speed in Hz Allowed range of values are 0.1 to 2 sinusoidal (bool): If ``True``, uses sinusoidal modulation (preferable for multiple instruments) If ``False``, uses triangular modulation (gives single instruments a sharper phasing effect) (Default: ``True``) Returns: Tensor: Waveform of dimension of `(..., time)` References: http://sox.sourceforge.net/sox.html Scott Lehman, Effects Explained, http://harmony-central.com/Effects/effects-explained.html """ actual_shape = waveform.shape device, dtype = waveform.device, waveform.dtype # convert to 2D (channels,time) waveform = waveform.view(-1, actual_shape[-1]) delay_buf_len = int((delay_ms * .001 * sample_rate) + .5) delay_buf = torch.zeros(waveform.shape[0], delay_buf_len, dtype=dtype, device=device) mod_buf_len = int(sample_rate / mod_speed + .5) if sinusoidal: wave_type = 'SINE' else: wave_type = 'TRIANGLE' mod_buf = _generate_wave_table(wave_type=wave_type, data_type='INT', table_size=mod_buf_len, min=1., max=float(delay_buf_len), phase=math.pi / 2, device=device) delay_pos = 0 mod_pos = 0 output_waveform_pre_gain_list = [] waveform = waveform * gain_in delay_buf = delay_buf * decay waveform_list = [waveform[:, i] for i in range(waveform.size(1))] delay_buf_list = [delay_buf[:, i] for i in range(delay_buf.size(1))] mod_buf_list = [mod_buf[i] for i in range(mod_buf.size(0))] for i in range(waveform.shape[-1]): idx = int((delay_pos + mod_buf_list[mod_pos]) % delay_buf_len) mod_pos = (mod_pos + 1) % mod_buf_len delay_pos = (delay_pos + 1) % delay_buf_len temp = (waveform_list[i]) + (delay_buf_list[idx]) delay_buf_list[delay_pos] = temp * decay output_waveform_pre_gain_list.append(temp) output_waveform = torch.stack(output_waveform_pre_gain_list, dim=1).to(dtype=dtype, device=device) output_waveform.mul_(gain_out) return output_waveform.clamp(min=-1, max=1).view(actual_shape)
def _generate_wave_table( wave_type: str, data_type: str, table_size: int, min: float, max: float, phase: float, device: torch.device ) -> Tensor: r"""A helper fucntion for phaser. Generates a table with given parameters Args: wave_type (str): SINE or TRIANGULAR data_type (str): desired data_type ( `INT` or `FLOAT` ) table_size (int): desired table size min (float): desired min value max (float): desired max value phase (float): desired phase device (torch.device): Torch device on which table must be generated Returns: Tensor: A 1D tensor with wave table values """ phase_offset = int(phase / math.pi / 2 * table_size + 0.5) t = torch.arange(table_size, device=device, dtype=torch.int32) point = (t + phase_offset) % table_size d = torch.zeros_like(point, device=device, dtype=torch.float64) if wave_type == 'SINE': d = (torch.sin(point.to(torch.float64) / table_size * 2 * math.pi) + 1) / 2 elif wave_type == 'TRIANGLE': d = point.to(torch.float64) * 2 / table_size value = 4 * point // table_size d[value == 0] = d[value == 0] + 0.5 d[value == 1] = 1.5 - d[value == 1] d[value == 2] = 1.5 - d[value == 2] d[value == 3] = d[value == 3] - 1.5 d = d * (max - min) + min if data_type == 'INT': mask = d < 0 d[mask] = d[mask] - 0.5 d[~mask] = d[~mask] + 0.5 d = d.to(torch.int32) elif data_type == 'FLOAT': d = d.to(torch.float32) return d
[docs]def flanger( waveform: Tensor, sample_rate: int, delay: float = 0., depth: float = 2., regen: float = 0., width: float = 71., speed: float = 0.5, phase: float = 25., modulation: str = 'sinusoidal', interpolation: str = 'linear' ) -> Tensor: r"""Apply a flanger effect to the audio. Similar to SoX implementation. Args: waveform (Tensor): audio waveform of dimension of `(..., channel, time)` . Max 4 channels allowed sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz) delay (float): desired delay in milliseconds(ms) Allowed range of values are 0 to 30 depth (float): desired delay depth in milliseconds(ms) Allowed range of values are 0 to 10 regen (float): desired regen(feeback gain) in dB Allowed range of values are -95 to 95 width (float): desired width(delay gain) in dB Allowed range of values are 0 to 100 speed (float): modulation speed in Hz Allowed range of values are 0.1 to 10 phase (float): percentage phase-shift for multi-channel Allowed range of values are 0 to 100 modulation (str): Use either "sinusoidal" or "triangular" modulation. (Default: ``sinusoidal``) interpolation (str): Use either "linear" or "quadratic" for delay-line interpolation. (Default: ``linear``) Returns: Tensor: Waveform of dimension of `(..., channel, time)` References: http://sox.sourceforge.net/sox.html Scott Lehman, Effects Explained, https://web.archive.org/web/20051125072557/http://www.harmony-central.com/Effects/effects-explained.html """ if modulation not in ('sinusoidal', 'triangular'): raise ValueError("Only 'sinusoidal' or 'triangular' modulation allowed") if interpolation not in ('linear', 'quadratic'): raise ValueError("Only 'linear' or 'quadratic' interpolation allowed") actual_shape = waveform.shape device, dtype = waveform.device, waveform.dtype if actual_shape[-2] > 4: raise ValueError("Max 4 channels allowed") # convert to 3D (batch, channels, time) waveform = waveform.view(-1, actual_shape[-2], actual_shape[-1]) # Scaling feedback_gain = regen / 100 delay_gain = width / 100 channel_phase = phase / 100 delay_min = delay / 1000 delay_depth = depth / 1000 n_channels = waveform.shape[-2] if modulation == 'sinusoidal': wave_type = 'SINE' else: wave_type = 'TRIANGLE' # Balance output: in_gain = 1. / (1 + delay_gain) delay_gain = delay_gain / (1 + delay_gain) # Balance feedback loop: delay_gain = delay_gain * (1 - abs(feedback_gain)) delay_buf_length = int((delay_min + delay_depth) * sample_rate + 0.5) delay_buf_length = delay_buf_length + 2 delay_bufs = torch.zeros(waveform.shape[0], n_channels, delay_buf_length, dtype=dtype, device=device) delay_last = torch.zeros(waveform.shape[0], n_channels, dtype=dtype, device=device) lfo_length = int(sample_rate / speed) table_min = math.floor(delay_min * sample_rate + 0.5) table_max = delay_buf_length - 2. lfo = _generate_wave_table(wave_type=wave_type, data_type='FLOAT', table_size=lfo_length, min=float(table_min), max=float(table_max), phase=3 * math.pi / 2, device=device) output_waveform = torch.zeros_like(waveform, dtype=dtype, device=device) delay_buf_pos = 0 lfo_pos = 0 channel_idxs = torch.arange(0, n_channels, device=device) for i in range(waveform.shape[-1]): delay_buf_pos = (delay_buf_pos + delay_buf_length - 1) % delay_buf_length cur_channel_phase = (channel_idxs * lfo_length * channel_phase + .5).to(torch.int64) delay_tensor = lfo[(lfo_pos + cur_channel_phase) % lfo_length] frac_delay = torch.frac(delay_tensor) delay_tensor = torch.floor(delay_tensor) int_delay = delay_tensor.to(torch.int64) temp = waveform[:, :, i] delay_bufs[:, :, delay_buf_pos] = temp + delay_last * feedback_gain delayed_0 = delay_bufs[:, channel_idxs, (delay_buf_pos + int_delay) % delay_buf_length] int_delay = int_delay + 1 delayed_1 = delay_bufs[:, channel_idxs, (delay_buf_pos + int_delay) % delay_buf_length] int_delay = int_delay + 1 if interpolation == 'linear': delayed = delayed_0 + (delayed_1 - delayed_0) * frac_delay else: delayed_2 = delay_bufs[:, channel_idxs, (delay_buf_pos + int_delay) % delay_buf_length] int_delay = int_delay + 1 delayed_2 = delayed_2 - delayed_0 delayed_1 = delayed_1 - delayed_0 a = delayed_2 * .5 - delayed_1 b = delayed_1 * 2 - delayed_2 * .5 delayed = delayed_0 + (a * frac_delay + b) * frac_delay delay_last = delayed output_waveform[:, :, i] = waveform[:, :, i] * in_gain + delayed * delay_gain lfo_pos = (lfo_pos + 1) % lfo_length return output_waveform.clamp(min=-1, max=1).view(actual_shape)
[docs]def mask_along_axis_iid( specgrams: Tensor, mask_param: int, mask_value: float, axis: int ) -> Tensor: r""" Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. Args: specgrams (Tensor): Real spectrograms (batch, channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (2 -> frequency, 3 -> time) Returns: Tensor: Masked spectrograms of dimensions (batch, channel, freq, time) """ if axis != 2 and axis != 3: raise ValueError('Only Frequency and Time masking are supported') device = specgrams.device dtype = specgrams.dtype value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * mask_param min_value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * (specgrams.size(axis) - value) # Create broadcastable mask mask_start = min_value[..., None, None] mask_end = (min_value + value)[..., None, None] mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype) # Per batch example masking specgrams = specgrams.transpose(axis, -1) specgrams.masked_fill_((mask >= mask_start) & (mask < mask_end), mask_value) specgrams = specgrams.transpose(axis, -1) return specgrams
[docs]def mask_along_axis( specgram: Tensor, mask_param: int, mask_value: float, axis: int ) -> Tensor: r""" Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where ``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``. All examples will have the same mask interval. Args: specgram (Tensor): Real spectrogram (channel, freq, time) mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param] mask_value (float): Value to assign to the masked columns axis (int): Axis to apply masking on (1 -> frequency, 2 -> time) Returns: Tensor: Masked spectrogram of dimensions (channel, freq, time) """ # pack batch shape = specgram.size() specgram = specgram.reshape([-1] + list(shape[-2:])) value = torch.rand(1) * mask_param min_value = torch.rand(1) * (specgram.size(axis) - value) mask_start = (min_value.long()).squeeze() mask_end = (min_value.long() + value.long()).squeeze() assert mask_end - mask_start < mask_param if axis == 1: specgram[:, mask_start:mask_end] = mask_value elif axis == 2: specgram[:, :, mask_start:mask_end] = mask_value else: raise ValueError('Only Frequency and Time masking are supported') # unpack batch specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:]) return specgram
[docs]def compute_deltas( specgram: Tensor, win_length: int = 5, mode: str = "replicate" ) -> Tensor: r"""Compute delta coefficients of a tensor, usually a spectrogram: .. math:: d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2} where :math:`d_t` is the deltas at time :math:`t`, :math:`c_t` is the spectrogram coeffcients at time :math:`t`, :math:`N` is ``(win_length-1)//2``. Args: specgram (Tensor): Tensor of audio of dimension (..., freq, time) win_length (int, optional): The window length used for computing delta (Default: ``5``) mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``) Returns: Tensor: Tensor of deltas of dimension (..., freq, time) Example >>> specgram = torch.randn(1, 40, 1000) >>> delta = compute_deltas(specgram) >>> delta2 = compute_deltas(delta) """ device = specgram.device dtype = specgram.dtype # pack batch shape = specgram.size() specgram = specgram.reshape(1, -1, shape[-1]) assert win_length >= 3 n = (win_length - 1) // 2 # twice sum of integer squared denom = n * (n + 1) * (2 * n + 1) / 3 specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode) kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1) output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom # unpack batch output = output.reshape(shape) return output
def gain( waveform: Tensor, gain_db: float = 1.0 ) -> Tensor: r"""Apply amplification or attenuation to the whole waveform. Args: waveform (Tensor): Tensor of audio of dimension (..., time). gain_db (float, optional) Gain adjustment in decibels (dB) (Default: ``1.0``). Returns: Tensor: the whole waveform amplified by gain_db. """ if (gain_db == 0): return waveform ratio = 10 ** (gain_db / 20) return waveform * ratio def _add_noise_shaping( dithered_waveform: Tensor, waveform: Tensor ) -> Tensor: r"""Noise shaping is calculated by error: error[n] = dithered[n] - original[n] noise_shaped_waveform[n] = dithered[n] + error[n-1] """ wf_shape = waveform.size() waveform = waveform.reshape(-1, wf_shape[-1]) dithered_shape = dithered_waveform.size() dithered_waveform = dithered_waveform.reshape(-1, dithered_shape[-1]) error = dithered_waveform - waveform # add error[n-1] to dithered_waveform[n], so offset the error by 1 index zeros = torch.zeros(1, dtype=error.dtype, device=error.device) for index in range(error.size()[0]): err = error[index] error_offset = torch.cat((zeros, err)) error[index] = error_offset[:waveform.size()[1]] noise_shaped = dithered_waveform + error return noise_shaped.reshape(dithered_shape[:-1] + noise_shaped.shape[-1:]) def _apply_probability_distribution( waveform: Tensor, density_function: str = "TPDF" ) -> Tensor: r"""Apply a probability distribution function on a waveform. Triangular probability density function (TPDF) dither noise has a triangular distribution; values in the center of the range have a higher probability of occurring. Rectangular probability density function (RPDF) dither noise has a uniform distribution; any value in the specified range has the same probability of occurring. Gaussian probability density function (GPDF) has a normal distribution. The relationship of probabilities of results follows a bell-shaped, or Gaussian curve, typical of dither generated by analog sources. Args: waveform (Tensor): Tensor of audio of dimension (..., time) probability_density_function (str, optional): The density function of a continuous random variable (Default: ``"TPDF"``) Options: Triangular Probability Density Function - `TPDF` Rectangular Probability Density Function - `RPDF` Gaussian Probability Density Function - `GPDF` Returns: Tensor: waveform dithered with TPDF """ # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) channel_size = waveform.size()[0] - 1 time_size = waveform.size()[-1] - 1 random_channel = int(torch.randint(channel_size, [1, ]).item()) if channel_size > 0 else 0 random_time = int(torch.randint(time_size, [1, ]).item()) if time_size > 0 else 0 number_of_bits = 16 up_scaling = 2 ** (number_of_bits - 1) - 2 signal_scaled = waveform * up_scaling down_scaling = 2 ** (number_of_bits - 1) signal_scaled_dis = waveform if (density_function == "RPDF"): RPDF = waveform[random_channel][random_time] - 0.5 signal_scaled_dis = signal_scaled + RPDF elif (density_function == "GPDF"): # TODO Replace by distribution code once # https://github.com/pytorch/pytorch/issues/29843 is resolved # gaussian = torch.distributions.normal.Normal(torch.mean(waveform, -1), 1).sample() num_rand_variables = 6 gaussian = waveform[random_channel][random_time] for ws in num_rand_variables * [time_size]: rand_chan = int(torch.randint(channel_size, [1, ]).item()) gaussian += waveform[rand_chan][int(torch.randint(ws, [1, ]).item())] signal_scaled_dis = signal_scaled + gaussian else: # dtype needed for https://github.com/pytorch/pytorch/issues/32358 TPDF = torch.bartlett_window(time_size + 1, dtype=signal_scaled.dtype, device=signal_scaled.device) TPDF = TPDF.repeat((channel_size + 1), 1) signal_scaled_dis = signal_scaled + TPDF quantised_signal_scaled = torch.round(signal_scaled_dis) quantised_signal = quantised_signal_scaled / down_scaling # unpack batch return quantised_signal.reshape(shape[:-1] + quantised_signal.shape[-1:]) def dither( waveform: Tensor, density_function: str = "TPDF", noise_shaping: bool = False ) -> Tensor: r"""Dither increases the perceived dynamic range of audio stored at a particular bit-depth by eliminating nonlinear truncation distortion (i.e. adding minimally perceived noise to mask distortion caused by quantization). Args: waveform (Tensor): Tensor of audio of dimension (..., time) density_function (str, optional): The density function of a continuous random variable (Default: ``"TPDF"``) Options: Triangular Probability Density Function - `TPDF` Rectangular Probability Density Function - `RPDF` Gaussian Probability Density Function - `GPDF` noise_shaping (bool, optional): a filtering process that shapes the spectral energy of quantisation error (Default: ``False``) Returns: Tensor: waveform dithered """ dithered = _apply_probability_distribution(waveform, density_function=density_function) if noise_shaping: return _add_noise_shaping(dithered, waveform) else: return dithered def _compute_nccf( waveform: Tensor, sample_rate: int, frame_time: float, freq_low: int ) -> Tensor: r""" Compute Normalized Cross-Correlation Function (NCCF). .. math:: \phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}}, where :math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`, :math:`w` is the waveform, :math:`N` is the length of a frame, :math:`b_i` is the beginning of frame :math:`i`, :math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`. """ EPSILON = 10 ** (-9) # Number of lags to check lags = int(math.ceil(sample_rate / freq_low)) frame_size = int(math.ceil(sample_rate * frame_time)) waveform_length = waveform.size()[-1] num_of_frames = int(math.ceil(waveform_length / frame_size)) p = lags + num_of_frames * frame_size - waveform_length waveform = torch.nn.functional.pad(waveform, (0, p)) # Compute lags output_lag = [] for lag in range(1, lags + 1): s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :] s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :] output_frames = ( (s1 * s2).sum(-1) / (EPSILON + torch.norm(s1, p=2, dim=-1)).pow(2) / (EPSILON + torch.norm(s2, p=2, dim=-1)).pow(2) ) output_lag.append(output_frames.unsqueeze(-1)) nccf = torch.cat(output_lag, -1) return nccf def _combine_max( a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor], thresh: float = 0.99 ) -> Tuple[Tensor, Tensor]: """ Take value from first if bigger than a multiplicative factor of the second, elementwise. """ mask = (a[0] > thresh * b[0]) values = mask * a[0] + ~mask * b[0] indices = mask * a[1] + ~mask * b[1] return values, indices def _find_max_per_frame( nccf: Tensor, sample_rate: int, freq_high: int ) -> Tensor: r""" For each frame, take the highest value of NCCF, apply centered median smoothing, and convert to frequency. Note: If the max among all the lags is very close to the first half of lags, then the latter is taken. """ lag_min = int(math.ceil(sample_rate / freq_high)) # Find near enough max that is smallest best = torch.max(nccf[..., lag_min:], -1) half_size = nccf.shape[-1] // 2 half = torch.max(nccf[..., lag_min:half_size], -1) best = _combine_max(half, best) indices = best[1] # Add back minimal lag indices += lag_min # Add 1 empirical calibration offset indices += 1 return indices def _median_smoothing( indices: Tensor, win_length: int ) -> Tensor: r""" Apply median smoothing to the 1D tensor over the given window. """ # Centered windowed pad_length = (win_length - 1) // 2 # "replicate" padding in any dimension indices = torch.nn.functional.pad( indices, (pad_length, 0), mode="constant", value=0. ) indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1) roll = indices.unfold(-1, win_length, 1) values, _ = torch.median(roll, -1) return values
[docs]def detect_pitch_frequency( waveform: Tensor, sample_rate: int, frame_time: float = 10 ** (-2), win_length: int = 30, freq_low: int = 85, freq_high: int = 3400, ) -> Tensor: r"""Detect pitch frequency. It is implemented using normalized cross-correlation function and median smoothing. Args: waveform (Tensor): Tensor of audio of dimension (..., freq, time) sample_rate (int): The sample rate of the waveform (Hz) frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``). win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``). freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``). freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``). Returns: Tensor: Tensor of freq of dimension (..., frame) """ # pack batch shape = list(waveform.size()) waveform = waveform.reshape([-1] + shape[-1:]) nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low) indices = _find_max_per_frame(nccf, sample_rate, freq_high) indices = _median_smoothing(indices, win_length) # Convert indices to frequency EPSILON = 10 ** (-9) freq = sample_rate / (EPSILON + indices.to(torch.float)) # unpack batch freq = freq.reshape(shape[:-1] + list(freq.shape[-1:])) return freq
[docs]def sliding_window_cmn( waveform: Tensor, cmn_window: int = 600, min_cmn_window: int = 100, center: bool = False, norm_vars: bool = False, ) -> Tensor: r""" Apply sliding-window cepstral mean (and optionally variance) normalization per utterance. Args: waveform (Tensor): Tensor of audio of dimension (..., freq, time) cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600) min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100) center (bool, optional): If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false) norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false) Returns: Tensor: Tensor of freq of dimension (..., frame) """ input_shape = waveform.shape num_frames, num_feats = input_shape[-2:] waveform = waveform.view(-1, num_frames, num_feats) num_channels = waveform.shape[0] dtype = waveform.dtype device = waveform.device last_window_start = last_window_end = -1 cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device) cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device) cmn_waveform = torch.zeros( num_channels, num_frames, num_feats, dtype=dtype, device=device) for t in range(num_frames): window_start = 0 window_end = 0 if center: window_start = t - cmn_window // 2 window_end = window_start + cmn_window else: window_start = t - cmn_window window_end = t + 1 if window_start < 0: window_end -= window_start window_start = 0 if not center: if window_end > t: window_end = max(t + 1, min_cmn_window) if window_end > num_frames: window_start -= (window_end - num_frames) window_end = num_frames if window_start < 0: window_start = 0 if last_window_start == -1: input_part = waveform[:, window_start: window_end - window_start, :] cur_sum += torch.sum(input_part, 1) if norm_vars: cur_sumsq += torch.cumsum(input_part ** 2, 1)[:, -1, :] else: if window_start > last_window_start: frame_to_remove = waveform[:, last_window_start, :] cur_sum -= frame_to_remove if norm_vars: cur_sumsq -= (frame_to_remove ** 2) if window_end > last_window_end: frame_to_add = waveform[:, last_window_end, :] cur_sum += frame_to_add if norm_vars: cur_sumsq += (frame_to_add ** 2) window_frames = window_end - window_start last_window_start = window_start last_window_end = window_end cmn_waveform[:, t, :] = waveform[:, t, :] - cur_sum / window_frames if norm_vars: if window_frames == 1: cmn_waveform[:, t, :] = torch.zeros( num_channels, num_feats, dtype=dtype, device=device) else: variance = cur_sumsq variance = variance / window_frames variance -= ((cur_sum ** 2) / (window_frames ** 2)) variance = torch.pow(variance, -0.5) cmn_waveform[:, t, :] *= variance cmn_waveform = cmn_waveform.view(input_shape[:-2] + (num_frames, num_feats)) if len(input_shape) == 2: cmn_waveform = cmn_waveform.squeeze(0) return cmn_waveform
def _measure( measure_len_ws: int, samples: Tensor, spectrum: Tensor, noise_spectrum: Tensor, spectrum_window: Tensor, spectrum_start: int, spectrum_end: int, cepstrum_window: Tensor, cepstrum_start: int, cepstrum_end: int, noise_reduction_amount: float, measure_smooth_time_mult: float, noise_up_time_mult: float, noise_down_time_mult: float, index_ns: int, boot_count: int ) -> float: assert spectrum.size()[-1] == noise_spectrum.size()[-1] samplesLen_ns = samples.size()[-1] dft_len_ws = spectrum.size()[-1] dftBuf = torch.zeros(dft_len_ws) _index_ns = torch.tensor([index_ns] + [ (index_ns + i) % samplesLen_ns for i in range(1, measure_len_ws) ]) dftBuf[:measure_len_ws] = \ samples[_index_ns] * spectrum_window[:measure_len_ws] # memset(c->dftBuf + i, 0, (p->dft_len_ws - i) * sizeof(*c->dftBuf)); dftBuf[measure_len_ws:dft_len_ws].zero_() # lsx_safe_rdft((int)p->dft_len_ws, 1, c->dftBuf); _dftBuf = torch.rfft(dftBuf, 1) # memset(c->dftBuf, 0, p->spectrum_start * sizeof(*c->dftBuf)); _dftBuf[:spectrum_start].zero_() mult: float = boot_count / (1. + boot_count) \ if boot_count >= 0 \ else measure_smooth_time_mult _d = complex_norm(_dftBuf[spectrum_start:spectrum_end]) spectrum[spectrum_start:spectrum_end].mul_(mult).add_(_d * (1 - mult)) _d = spectrum[spectrum_start:spectrum_end] ** 2 _zeros = torch.zeros(spectrum_end - spectrum_start) _mult = _zeros \ if boot_count >= 0 \ else torch.where( _d > noise_spectrum[spectrum_start:spectrum_end], torch.tensor(noise_up_time_mult), # if torch.tensor(noise_down_time_mult) # else ) noise_spectrum[spectrum_start:spectrum_end].mul_(_mult).add_(_d * (1 - _mult)) _d = torch.sqrt( torch.max( _zeros, _d - noise_reduction_amount * noise_spectrum[spectrum_start:spectrum_end])) _cepstrum_Buf: Tensor = torch.zeros(dft_len_ws >> 1) _cepstrum_Buf[spectrum_start:spectrum_end] = _d * cepstrum_window _cepstrum_Buf[spectrum_end:dft_len_ws >> 1].zero_() # lsx_safe_rdft((int)p->dft_len_ws >> 1, 1, c->dftBuf); _cepstrum_Buf = torch.rfft(_cepstrum_Buf, 1) result: float = float(torch.sum( complex_norm( _cepstrum_Buf[cepstrum_start:cepstrum_end], power=2.0))) result = \ math.log(result / (cepstrum_end - cepstrum_start)) \ if result > 0 \ else -math.inf return max(0, 21 + result)
[docs]def vad( waveform: Tensor, sample_rate: int, trigger_level: float = 7.0, trigger_time: float = 0.25, search_time: float = 1.0, allowed_gap: float = 0.25, pre_trigger_time: float = 0.0, # Fine-tuning parameters boot_time: float = .35, noise_up_time: float = .1, noise_down_time: float = .01, noise_reduction_amount: float = 1.35, measure_freq: float = 20.0, measure_duration: Optional[float] = None, measure_smooth_time: float = .4, hp_filter_freq: float = 50., lp_filter_freq: float = 6000., hp_lifter_freq: float = 150., lp_lifter_freq: float = 2000., ) -> Tensor: r"""Voice Activity Detector. Similar to SoX implementation. Attempts to trim silence and quiet background sounds from the ends of recordings of speech. The algorithm currently uses a simple cepstral power measurement to detect voice, so may be fooled by other things, especially music. The effect can trim only from the front of the audio, so in order to trim from the back, the reverse effect must also be used. Args: waveform (Tensor): Tensor of audio of dimension `(..., time)` sample_rate (int): Sample rate of audio signal. trigger_level (float, optional): The measurement level used to trigger activity detection. This may need to be cahnged depending on the noise level, signal level, and other characteristics of the input audio. (Default: 7.0) trigger_time (float, optional): The time constant (in seconds) used to help ignore short bursts of sound. (Default: 0.25) search_time (float, optional): The amount of audio (in seconds) to search for quieter/shorter bursts of audio to include prior to the detected trigger point. (Default: 1.0) allowed_gap (float, optional): The allowed gap (in seconds) between quiteter/shorter bursts of audio to include prior to the detected trigger point. (Default: 0.25) pre_trigger_time (float, optional): The amount of audio (in seconds) to preserve before the trigger point and any found quieter/shorter bursts. (Default: 0.0) boot_time (float, optional) The algorithm (internally) uses adaptive noise estimation/reduction in order to detect the start of the wanted audio. This option sets the time for the initial noise estimate. (Default: 0.35) noise_up_time (float, optional) Time constant used by the adaptive noise estimator for when the noise level is increasing. (Default: 0.1) noise_down_time (float, optional) Time constant used by the adaptive noise estimator for when the noise level is decreasing. (Default: 0.01) noise_reduction_amount (float, optional) Amount of noise reduction to use in the detection algorithm (e.g. 0, 0.5, ...). (Default: 1.35) measure_freq (float, optional) Frequency of the algorithm’s processing/measurements. (Default: 20.0) measure_duration: (float, optional) Measurement duration. (Default: Twice the measurement period; i.e. with overlap.) measure_smooth_time (float, optional) Time constant used to smooth spectral measurements. (Default: 0.4) hp_filter_freq (float, optional) "Brick-wall" frequency of high-pass filter applied at the input to the detector algorithm. (Default: 50.0) lp_filter_freq (float, optional) "Brick-wall" frequency of low-pass filter applied at the input to the detector algorithm. (Default: 6000.0) hp_lifter_freq (float, optional) "Brick-wall" frequency of high-pass lifter used in the detector algorithm. (Default: 150.0) lp_lifter_freq (float, optional) "Brick-wall" frequency of low-pass lifter used in the detector algorithm. (Default: 2000.0) Returns: Tensor: Tensor of audio of dimension (..., time). References: http://sox.sourceforge.net/sox.html """ measure_duration: float = 2.0 / measure_freq \ if measure_duration is None \ else measure_duration measure_len_ws = int(sample_rate * measure_duration + .5) measure_len_ns = measure_len_ws # for (dft_len_ws = 16; dft_len_ws < measure_len_ws; dft_len_ws <<= 1); dft_len_ws = 16 while (dft_len_ws < measure_len_ws): dft_len_ws *= 2 measure_period_ns = int(sample_rate / measure_freq + .5) measures_len = math.ceil(search_time * measure_freq) search_pre_trigger_len_ns = measures_len * measure_period_ns gap_len = int(allowed_gap * measure_freq + .5) fixed_pre_trigger_len_ns = int(pre_trigger_time * sample_rate + .5) samplesLen_ns = fixed_pre_trigger_len_ns + search_pre_trigger_len_ns + measure_len_ns spectrum_window = torch.zeros(measure_len_ws) for i in range(measure_len_ws): # sox.h:741 define SOX_SAMPLE_MIN (sox_sample_t)SOX_INT_MIN(32) spectrum_window[i] = 2. / math.sqrt(float(measure_len_ws)) # lsx_apply_hann(spectrum_window, (int)measure_len_ws); spectrum_window *= torch.hann_window(measure_len_ws, dtype=torch.float) spectrum_start: int = int(hp_filter_freq / sample_rate * dft_len_ws + .5) spectrum_start: int = max(spectrum_start, 1) spectrum_end: int = int(lp_filter_freq / sample_rate * dft_len_ws + .5) spectrum_end: int = min(spectrum_end, dft_len_ws // 2) cepstrum_window = torch.zeros(spectrum_end - spectrum_start) for i in range(spectrum_end - spectrum_start): cepstrum_window[i] = 2. / math.sqrt(float(spectrum_end) - spectrum_start) # lsx_apply_hann(cepstrum_window,(int)(spectrum_end - spectrum_start)); cepstrum_window *= torch.hann_window(spectrum_end - spectrum_start, dtype=torch.float) cepstrum_start = math.ceil(sample_rate * .5 / lp_lifter_freq) cepstrum_end = math.floor(sample_rate * .5 / hp_lifter_freq) cepstrum_end = min(cepstrum_end, dft_len_ws // 4) assert cepstrum_end > cepstrum_start noise_up_time_mult = math.exp(-1. / (noise_up_time * measure_freq)) noise_down_time_mult = math.exp(-1. / (noise_down_time * measure_freq)) measure_smooth_time_mult = math.exp(-1. / (measure_smooth_time * measure_freq)) trigger_meas_time_mult = math.exp(-1. / (trigger_time * measure_freq)) boot_count_max = int(boot_time * measure_freq - .5) measure_timer_ns = measure_len_ns boot_count = measures_index = flushedLen_ns = samplesIndex_ns = 0 # pack batch shape = waveform.size() waveform = waveform.view(-1, shape[-1]) n_channels, ilen = waveform.size() mean_meas = torch.zeros(n_channels) samples = torch.zeros(n_channels, samplesLen_ns) spectrum = torch.zeros(n_channels, dft_len_ws) noise_spectrum = torch.zeros(n_channels, dft_len_ws) measures = torch.zeros(n_channels, measures_len) has_triggered: bool = False num_measures_to_flush: int = 0 pos: int = 0 while (pos < ilen and not has_triggered): measure_timer_ns -= 1 for i in range(n_channels): samples[i, samplesIndex_ns] = waveform[i, pos] # if (!p->measure_timer_ns) { if (measure_timer_ns == 0): index_ns: int = \ (samplesIndex_ns + samplesLen_ns - measure_len_ns) % samplesLen_ns meas: float = _measure( measure_len_ws=measure_len_ws, samples=samples[i], spectrum=spectrum[i], noise_spectrum=noise_spectrum[i], spectrum_window=spectrum_window, spectrum_start=spectrum_start, spectrum_end=spectrum_end, cepstrum_window=cepstrum_window, cepstrum_start=cepstrum_start, cepstrum_end=cepstrum_end, noise_reduction_amount=noise_reduction_amount, measure_smooth_time_mult=measure_smooth_time_mult, noise_up_time_mult=noise_up_time_mult, noise_down_time_mult=noise_down_time_mult, index_ns=index_ns, boot_count=boot_count) measures[i, measures_index] = meas mean_meas[i] = mean_meas[i] * trigger_meas_time_mult + meas * (1. - trigger_meas_time_mult) has_triggered = has_triggered or (mean_meas[i] >= trigger_level) if has_triggered: n: int = measures_len k: int = measures_index jTrigger: int = n jZero: int = n j: int = 0 for j in range(n): if (measures[i, k] >= trigger_level) and (j <= jTrigger + gap_len): jZero = jTrigger = j elif (measures[i, k] == 0) and (jTrigger >= jZero): jZero = j k = (k + n - 1) % n j = min(j, jZero) # num_measures_to_flush = range_limit(j, num_measures_to_flush, n); num_measures_to_flush = (min(max(num_measures_to_flush, j), n)) # end if has_triggered # end if (measure_timer_ns == 0): # end for samplesIndex_ns += 1 pos += 1 # end while if samplesIndex_ns == samplesLen_ns: samplesIndex_ns = 0 if measure_timer_ns == 0: measure_timer_ns = measure_period_ns measures_index += 1 measures_index = measures_index % measures_len if boot_count >= 0: boot_count = -1 if boot_count == boot_count_max else boot_count + 1 if has_triggered: flushedLen_ns = (measures_len - num_measures_to_flush) * measure_period_ns samplesIndex_ns = (samplesIndex_ns + flushedLen_ns) % samplesLen_ns res = waveform[:, pos - samplesLen_ns + flushedLen_ns:] # unpack batch return res.view(shape[:-1] + res.shape[-1:])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources