Source code for torchaudio.functional.functional
# -*- coding: utf-8 -*-
from collections.abc import Sequence
import io
import math
import warnings
from typing import Optional, Tuple
import torch
from torch import Tensor
from torchaudio._internal import module_utils as _mod_utils
import torchaudio
__all__ = [
"spectrogram",
"inverse_spectrogram",
"griffinlim",
"amplitude_to_DB",
"DB_to_amplitude",
"compute_deltas",
"compute_kaldi_pitch",
"create_fb_matrix",
"melscale_fbanks",
"linear_fbanks",
"create_dct",
"compute_deltas",
"detect_pitch_frequency",
"DB_to_amplitude",
"mu_law_encoding",
"mu_law_decoding",
"complex_norm",
"angle",
"magphase",
"phase_vocoder",
'mask_along_axis',
'mask_along_axis_iid',
'sliding_window_cmn',
"spectral_centroid",
"apply_codec",
"resample",
"edit_distance",
"pitch_shift",
"rnnt_loss",
]
[docs]def spectrogram(
waveform: Tensor,
pad: int,
window: Tensor,
n_fft: int,
hop_length: int,
win_length: int,
power: Optional[float],
normalized: bool,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True,
return_complex: bool = True,
) -> Tensor:
r"""Create a spectrogram or a batch of spectrograms from a raw audio signal.
The spectrogram can be either magnitude-only or complex.
Args:
waveform (Tensor): Tensor of audio of dimension `(..., time)`
pad (int): Two sided padding of signal
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT
hop_length (int): Length of hop between STFT windows
win_length (int): Window size
power (float or None): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
If None, then the complex spectrum is returned instead.
normalized (bool): Whether to normalize by magnitude after stft
center (bool, optional): whether to pad :attr:`waveform` on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
Default: ``True``
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. Default: ``"reflect"``
onesided (bool, optional): controls whether to return half of results to
avoid redundancy. Default: ``True``
return_complex (bool, optional):
Indicates whether the resulting complex-valued Tensor should be represented with
native complex dtype, such as `torch.cfloat` and `torch.cdouble`, or real dtype
mimicking complex value with an extra dimension for real and imaginary parts.
(See also ``torch.view_as_real``.)
This argument is only effective when ``power=None``. It is ignored for
cases where ``power`` is a number as in those cases, the returned tensor is
power spectrogram, which is a real-valued tensor.
Returns:
Tensor: Dimension `(..., freq, time)`, freq is
``n_fft // 2 + 1`` and ``n_fft`` is the number of
Fourier bins, and time is the number of window hops (n_frame).
"""
if power is None and not return_complex:
warnings.warn(
"The use of pseudo complex type in spectrogram is now deprecated."
"Please migrate to native complex type by providing `return_complex=True`. "
"Please refer to https://github.com/pytorch/audio/issues/1337 "
"for more details about torchaudio's plan to migrate to native complex type."
)
if pad > 0:
# TODO add "with torch.no_grad():" back when JIT supports it
waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant")
# pack batch
shape = waveform.size()
waveform = waveform.reshape(-1, shape[-1])
# default values are consistent with librosa.core.spectrum._spectrogram
spec_f = torch.stft(
input=waveform,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=center,
pad_mode=pad_mode,
normalized=False,
onesided=onesided,
return_complex=True,
)
# unpack batch
spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:])
if normalized:
spec_f /= window.pow(2.).sum().sqrt()
if power is not None:
if power == 1.0:
return spec_f.abs()
return spec_f.abs().pow(power)
if not return_complex:
return torch.view_as_real(spec_f)
return spec_f
[docs]def inverse_spectrogram(
spectrogram: Tensor,
length: Optional[int],
pad: int,
window: Tensor,
n_fft: int,
hop_length: int,
win_length: int,
normalized: bool,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True,
) -> Tensor:
r"""Create an inverse spectrogram or a batch of inverse spectrograms from the provided
complex-valued spectrogram.
Args:
spectrogram (Tensor): Complex tensor of audio of dimension (..., freq, time).
length (int or None): The output length of the waveform.
pad (int): Two sided padding of signal. It is only effective when ``length`` is provided.
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT
hop_length (int): Length of hop between STFT windows
win_length (int): Window size
normalized (bool): Whether the stft output was normalized by magnitude
center (bool, optional): whether the waveform was padded on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
Default: ``True``
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. This parameter is provided for compatibility with the
spectrogram function and is not used. Default: ``"reflect"``
onesided (bool, optional): controls whether spectrogram was done in onesided mode.
Default: ``True``
Returns:
Tensor: Dimension `(..., time)`. Least squares estimation of the original signal.
"""
if spectrogram.dtype == torch.float32 or spectrogram.dtype == torch.float64:
warnings.warn(
"The use of pseudo complex type in inverse_spectrogram is now deprecated. "
"Please migrate to native complex type by using a complex tensor as input. "
"If the input is generated via spectrogram() function or transform, please use "
"return_complex=True as an argument to that function. "
"Please refer to https://github.com/pytorch/audio/issues/1337 "
"for more details about torchaudio's plan to migrate to native complex type."
)
spectrogram = torch.view_as_complex(spectrogram)
if normalized:
spectrogram = spectrogram * window.pow(2.).sum().sqrt()
# pack batch
shape = spectrogram.size()
spectrogram = spectrogram.reshape(-1, shape[-2], shape[-1])
# default values are consistent with librosa.core.spectrum._spectrogram
waveform = torch.istft(
input=spectrogram,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=center,
normalized=False,
onesided=onesided,
length=length + 2 * pad if length is not None else None,
return_complex=False,
)
if length is not None and pad > 0:
# remove padding from front and back
waveform = waveform[:, pad:-pad]
# unpack batch
waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])
return waveform
def _get_complex_dtype(real_dtype: torch.dtype):
if real_dtype == torch.double:
return torch.cdouble
if real_dtype == torch.float:
return torch.cfloat
if real_dtype == torch.half:
return torch.complex32
raise ValueError(f'Unexpected dtype {real_dtype}')
[docs]def griffinlim(
specgram: Tensor,
window: Tensor,
n_fft: int,
hop_length: int,
win_length: int,
power: float,
n_iter: int,
momentum: float,
length: Optional[int],
rand_init: bool
) -> Tensor:
r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
Implementation ported from
*librosa* [:footcite:`brian_mcfee-proc-scipy-2015`], *A fast Griffin-Lim algorithm* [:footcite:`6701851`]
and *Signal estimation from modified short-time Fourier transform* [:footcite:`1172092`].
Args:
specgram (Tensor): A magnitude-only STFT spectrogram of dimension `(..., freq, frames)`
where freq is ``n_fft // 2 + 1``.
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins
hop_length (int): Length of hop between STFT windows. (
Default: ``win_length // 2``)
win_length (int): Window size. (Default: ``n_fft``)
power (float): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
n_iter (int): Number of iteration for phase recovery process.
momentum (float): The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method.
Values near 1 can lead to faster convergence, but above 1 may not converge.
length (int or None): Array length of the expected output.
rand_init (bool): Initializes phase randomly if True, to zero otherwise.
Returns:
Tensor: waveform of `(..., time)`, where time equals the ``length`` parameter if given.
"""
assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum)
assert momentum >= 0, 'momentum={} < 0'.format(momentum)
# pack batch
shape = specgram.size()
specgram = specgram.reshape([-1] + list(shape[-2:]))
specgram = specgram.pow(1 / power)
# initialize the phase
if rand_init:
angles = torch.rand(
specgram.size(),
dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
else:
angles = torch.full(
specgram.size(), 1,
dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
# And initialize the previous iterate to 0
tprev = torch.tensor(0., dtype=specgram.dtype, device=specgram.device)
for _ in range(n_iter):
# Invert with our current estimate of the phases
inverse = torch.istft(specgram * angles,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
length=length)
# Rebuild the spectrogram
rebuilt = torch.stft(
input=inverse,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True,
)
# Update our phase estimates
angles = rebuilt
if momentum:
angles = angles - tprev.mul_(momentum / (1 + momentum))
angles = angles.div(angles.abs().add(1e-16))
# Store the previous iterate
tprev = rebuilt
# Return the final phase estimates
waveform = torch.istft(specgram * angles,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
length=length)
# unpack batch
waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])
return waveform
[docs]def amplitude_to_DB(
x: Tensor,
multiplier: float,
amin: float,
db_multiplier: float,
top_db: Optional[float] = None
) -> Tensor:
r"""Turn a spectrogram from the power/amplitude scale to the decibel scale.
The output of each tensor in a batch depends on the maximum value of that tensor,
and so may return different values for an audio clip split into snippets vs. a full clip.
Args:
x (Tensor): Input spectrogram(s) before being converted to decibel scale. Input should take
the form `(..., freq, time)`. Batched inputs should include a channel dimension and
have the form `(batch, channel, freq, time)`.
multiplier (float): Use 10. for power and 20. for amplitude
amin (float): Number to clamp ``x``
db_multiplier (float): Log10(max(reference value and amin))
top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number
is 80. (Default: ``None``)
Returns:
Tensor: Output tensor in decibel scale
"""
x_db = multiplier * torch.log10(torch.clamp(x, min=amin))
x_db -= multiplier * db_multiplier
if top_db is not None:
# Expand batch
shape = x_db.size()
packed_channels = shape[-3] if x_db.dim() > 2 else 1
x_db = x_db.reshape(-1, packed_channels, shape[-2], shape[-1])
x_db = torch.max(x_db, (x_db.amax(dim=(-3, -2, -1)) - top_db).view(-1, 1, 1, 1))
# Repack batch
x_db = x_db.reshape(shape)
return x_db
[docs]def DB_to_amplitude(
x: Tensor,
ref: float,
power: float
) -> Tensor:
r"""Turn a tensor from the decibel scale to the power/amplitude scale.
Args:
x (Tensor): Input tensor before being converted to power/amplitude scale.
ref (float): Reference which the output will be scaled by.
power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
Returns:
Tensor: Output tensor in power/amplitude scale.
"""
return ref * torch.pow(torch.pow(10.0, 0.1 * x), power)
def _hz_to_mel(freq: float, mel_scale: str = "htk") -> float:
r"""Convert Hz to Mels.
Args:
freqs (float): Frequencies in Hz
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
Returns:
mels (float): Frequency in Mels
"""
if mel_scale not in ['slaney', 'htk']:
raise ValueError('mel_scale should be one of "htk" or "slaney".')
if mel_scale == "htk":
return 2595.0 * math.log10(1.0 + (freq / 700.0))
# Fill in the linear part
f_min = 0.0
f_sp = 200.0 / 3
mels = (freq - f_min) / f_sp
# Fill in the log-scale part
min_log_hz = 1000.0
min_log_mel = (min_log_hz - f_min) / f_sp
logstep = math.log(6.4) / 27.0
if freq >= min_log_hz:
mels = min_log_mel + math.log(freq / min_log_hz) / logstep
return mels
def _mel_to_hz(mels: Tensor, mel_scale: str = "htk") -> Tensor:
"""Convert mel bin numbers to frequencies.
Args:
mels (Tensor): Mel frequencies
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
Returns:
freqs (Tensor): Mels converted in Hz
"""
if mel_scale not in ['slaney', 'htk']:
raise ValueError('mel_scale should be one of "htk" or "slaney".')
if mel_scale == "htk":
return 700.0 * (10.0**(mels / 2595.0) - 1.0)
# Fill in the linear scale
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
# And now the nonlinear scale
min_log_hz = 1000.0
min_log_mel = (min_log_hz - f_min) / f_sp
logstep = math.log(6.4) / 27.0
log_t = (mels >= min_log_mel)
freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel))
return freqs
def _create_triangular_filterbank(
all_freqs: Tensor,
f_pts: Tensor,
) -> Tensor:
"""Create a triangular filter bank.
Args:
all_freqs (Tensor): STFT freq points of size (`n_freqs`).
f_pts (Tensor): Filter mid points of size (`n_filter`).
Returns:
fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`).
"""
# Adopted from Librosa
# calculate the difference between each filter mid point and each stft freq point in hertz
f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1)
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2)
# create overlapping triangles
zero = torch.zeros(1)
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter)
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter)
fb = torch.max(zero, torch.min(down_slopes, up_slopes))
return fb
[docs]def create_fb_matrix(
n_freqs: int,
f_min: float,
f_max: float,
n_mels: int,
sample_rate: int,
norm: Optional[str] = None,
mel_scale: str = "htk",
) -> Tensor:
r"""Create a frequency bin conversion matrix.
Args:
n_freqs (int): Number of frequencies to highlight/apply
f_min (float): Minimum frequency (Hz)
f_max (float): Maximum frequency (Hz)
n_mels (int): Number of mel filterbanks
sample_rate (int): Sample rate of the audio waveform
norm (str or None, optional): If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
Returns:
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
``A * create_fb_matrix(A.size(-1), ...)``.
"""
warnings.warn(
"The use of `create_fb_matrix` is now deprecated and will be removed in "
"the 0.11 release. "
"Please migrate your code to use `melscale_fbanks` instead. "
"For more information, please refer to https://github.com/pytorch/audio/issues/1574."
)
return melscale_fbanks(
n_freqs=n_freqs,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
sample_rate=sample_rate,
norm=norm,
mel_scale=mel_scale
)
[docs]def melscale_fbanks(
n_freqs: int,
f_min: float,
f_max: float,
n_mels: int,
sample_rate: int,
norm: Optional[str] = None,
mel_scale: str = "htk",
) -> Tensor:
r"""Create a frequency bin conversion matrix.
Note:
For the sake of the numerical compatibility with librosa, not all the coefficients
in the resulting filter bank has magnitude of 1.
.. image:: https://download.pytorch.org/torchaudio/doc-assets/mel_fbanks.png
:alt: Visualization of generated filter bank
Args:
n_freqs (int): Number of frequencies to highlight/apply
f_min (float): Minimum frequency (Hz)
f_max (float): Maximum frequency (Hz)
n_mels (int): Number of mel filterbanks
sample_rate (int): Sample rate of the audio waveform
norm (str or None, optional): If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
Returns:
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
``A * melscale_fbanks(A.size(-1), ...)``.
"""
if norm is not None and norm != "slaney":
raise ValueError("norm must be one of None or 'slaney'")
# freq bins
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
# calculate mel freq bins
m_min = _hz_to_mel(f_min, mel_scale=mel_scale)
m_max = _hz_to_mel(f_max, mel_scale=mel_scale)
m_pts = torch.linspace(m_min, m_max, n_mels + 2)
f_pts = _mel_to_hz(m_pts, mel_scale=mel_scale)
# create filterbank
fb = _create_triangular_filterbank(all_freqs, f_pts)
if norm is not None and norm == "slaney":
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels])
fb *= enorm.unsqueeze(0)
if (fb.max(dim=0).values == 0.).any():
warnings.warn(
"At least one mel filterbank has all zero values. "
f"The value for `n_mels` ({n_mels}) may be set too high. "
f"Or, the value for `n_freqs` ({n_freqs}) may be set too low."
)
return fb
[docs]def linear_fbanks(
n_freqs: int,
f_min: float,
f_max: float,
n_filter: int,
sample_rate: int,
) -> Tensor:
r"""Creates a linear triangular filterbank.
Note:
For the sake of the numerical compatibility with librosa, not all the coefficients
in the resulting filter bank has magnitude of 1.
.. image:: https://download.pytorch.org/torchaudio/doc-assets/lin_fbanks.png
:alt: Visualization of generated filter bank
Args:
n_freqs (int): Number of frequencies to highlight/apply
f_min (float): Minimum frequency (Hz)
f_max (float): Maximum frequency (Hz)
n_filter (int): Number of (linear) triangular filter
sample_rate (int): Sample rate of the audio waveform
Returns:
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_filter``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
``A * linear_fbanks(A.size(-1), ...)``.
"""
# freq bins
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
# filter mid-points
f_pts = torch.linspace(f_min, f_max, n_filter + 2)
# create filterbank
fb = _create_triangular_filterbank(all_freqs, f_pts)
return fb
[docs]def create_dct(
n_mfcc: int,
n_mels: int,
norm: Optional[str]
) -> Tensor:
r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
normalized depending on norm.
Args:
n_mfcc (int): Number of mfc coefficients to retain
n_mels (int): Number of mel filterbanks
norm (str or None): Norm to use (either 'ortho' or None)
Returns:
Tensor: The transformation matrix, to be right-multiplied to
row-wise data of size (``n_mels``, ``n_mfcc``).
"""
# http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
n = torch.arange(float(n_mels))
k = torch.arange(float(n_mfcc)).unsqueeze(1)
dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels)
if norm is None:
dct *= 2.0
else:
assert norm == "ortho"
dct[0] *= 1.0 / math.sqrt(2.0)
dct *= math.sqrt(2.0 / float(n_mels))
return dct.t()
[docs]def mu_law_encoding(
x: Tensor,
quantization_channels: int
) -> Tensor:
r"""Encode signal based on mu-law companding. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
This algorithm assumes the signal has been scaled to between -1 and 1 and
returns a signal encoded with values from 0 to quantization_channels - 1.
Args:
x (Tensor): Input tensor
quantization_channels (int): Number of channels
Returns:
Tensor: Input after mu-law encoding
"""
mu = quantization_channels - 1.0
if not x.is_floating_point():
x = x.to(torch.float)
mu = torch.tensor(mu, dtype=x.dtype)
x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
return x_mu
[docs]def mu_law_decoding(
x_mu: Tensor,
quantization_channels: int
) -> Tensor:
r"""Decode mu-law encoded signal. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
This expects an input with values between 0 and quantization_channels - 1
and returns a signal scaled between -1 and 1.
Args:
x_mu (Tensor): Input tensor
quantization_channels (int): Number of channels
Returns:
Tensor: Input after mu-law decoding
"""
mu = quantization_channels - 1.0
if not x_mu.is_floating_point():
x_mu = x_mu.to(torch.float)
mu = torch.tensor(mu, dtype=x_mu.dtype)
x = ((x_mu) / mu) * 2 - 1.0
x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
return x
[docs]@_mod_utils.deprecated(
"Please convert the input Tensor to complex type with `torch.view_as_complex` then "
"use `torch.abs`. "
"Please refer to https://github.com/pytorch/audio/issues/1337 "
"for more details about torchaudio's plan to migrate to native complex type.",
version="0.11",
)
def complex_norm(
complex_tensor: Tensor,
power: float = 1.0
) -> Tensor:
r"""Compute the norm of complex tensor input.
Args:
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
power (float, optional): Power of the norm. (Default: `1.0`).
Returns:
Tensor: Power of the normed input tensor. Shape of `(..., )`
"""
# Replace by torch.norm once issue is fixed
# https://github.com/pytorch/pytorch/issues/34279
return complex_tensor.pow(2.).sum(-1).pow(0.5 * power)
[docs]@_mod_utils.deprecated(
"Please convert the input Tensor to complex type with `torch.view_as_complex` then "
"use `torch.angle`. "
"Please refer to https://github.com/pytorch/audio/issues/1337 "
"for more details about torchaudio's plan to migrate to native complex type.",
version="0.11",
)
def angle(
complex_tensor: Tensor
) -> Tensor:
r"""Compute the angle of complex tensor input.
Args:
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
Return:
Tensor: Angle of a complex tensor. Shape of `(..., )`
"""
return torch.atan2(complex_tensor[..., 1], complex_tensor[..., 0])
[docs]@_mod_utils.deprecated(
"Please convert the input Tensor to complex type with `torch.view_as_complex` then "
"use `torch.abs` and `torch.angle`. "
"Please refer to https://github.com/pytorch/audio/issues/1337 "
"for more details about torchaudio's plan to migrate to native complex type.",
version="0.11",
)
def magphase(
complex_tensor: Tensor,
power: float = 1.0
) -> Tuple[Tensor, Tensor]:
r"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase.
Args:
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
power (float, optional): Power of the norm. (Default: `1.0`)
Returns:
(Tensor, Tensor): The magnitude and phase of the complex tensor
"""
mag = complex_norm(complex_tensor, power)
phase = angle(complex_tensor)
return mag, phase
[docs]def phase_vocoder(
complex_specgrams: Tensor,
rate: float,
phase_advance: Tensor
) -> Tensor:
r"""Given a STFT tensor, speed up in time without modifying pitch by a
factor of ``rate``.
Args:
complex_specgrams (Tensor):
Either a real tensor of dimension of `(..., freq, num_frame, complex=2)`
or a tensor of dimension `(..., freq, num_frame)` with complex dtype.
rate (float): Speed-up factor
phase_advance (Tensor): Expected phase advance in each bin. Dimension of `(freq, 1)`
Returns:
Tensor:
Stretched spectrogram. The resulting tensor is of the same dtype as the input
spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``.
Example - With Tensor of complex dtype
>>> freq, hop_length = 1025, 512
>>> # (channel, freq, time)
>>> complex_specgrams = torch.randn(2, freq, 300, dtype=torch.cfloat)
>>> rate = 1.3 # Speed up by 30%
>>> phase_advance = torch.linspace(
>>> 0, math.pi * hop_length, freq)[..., None]
>>> x = phase_vocoder(complex_specgrams, rate, phase_advance)
>>> x.shape # with 231 == ceil(300 / 1.3)
torch.Size([2, 1025, 231])
Example - With Tensor of real dtype and extra dimension for complex field
>>> freq, hop_length = 1025, 512
>>> # (channel, freq, time, complex=2)
>>> complex_specgrams = torch.randn(2, freq, 300, 2)
>>> rate = 1.3 # Speed up by 30%
>>> phase_advance = torch.linspace(
>>> 0, math.pi * hop_length, freq)[..., None]
>>> x = phase_vocoder(complex_specgrams, rate, phase_advance)
>>> x.shape # with 231 == ceil(300 / 1.3)
torch.Size([2, 1025, 231, 2])
"""
if rate == 1.0:
return complex_specgrams
if not complex_specgrams.is_complex():
warnings.warn(
"The support for pseudo complex type in `torchaudio.functional.phase_vocoder` and "
"`torchaudio.transforms.TimeStretch` is now deprecated and will be removed "
"from 0.11 release."
"Please migrate to native complex type by converting the input tensor with "
"`torch.view_as_complex`. "
"Please refer to https://github.com/pytorch/audio/issues/1337 "
"for more details about torchaudio's plan to migrate to native complex type."
)
if complex_specgrams.size(-1) != 2:
raise ValueError(
"complex_specgrams must be either native complex tensors or "
"real valued tensors with shape (..., 2)")
is_complex = complex_specgrams.is_complex()
if not is_complex:
complex_specgrams = torch.view_as_complex(complex_specgrams)
# pack batch
shape = complex_specgrams.size()
complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-2:]))
# Figures out the corresponding real dtype, i.e. complex128 -> float64, complex64 -> float32
# Note torch.real is a view so it does not incur any memory copy.
real_dtype = torch.real(complex_specgrams).dtype
time_steps = torch.arange(
0,
complex_specgrams.size(-1),
rate,
device=complex_specgrams.device,
dtype=real_dtype)
alphas = time_steps % 1.0
phase_0 = complex_specgrams[..., :1].angle()
# Time Padding
complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 2])
# (new_bins, freq, 2)
complex_specgrams_0 = complex_specgrams.index_select(-1, time_steps.long())
complex_specgrams_1 = complex_specgrams.index_select(-1, (time_steps + 1).long())
angle_0 = complex_specgrams_0.angle()
angle_1 = complex_specgrams_1.angle()
norm_0 = complex_specgrams_0.abs()
norm_1 = complex_specgrams_1.abs()
phase = angle_1 - angle_0 - phase_advance
phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi))
# Compute Phase Accum
phase = phase + phase_advance
phase = torch.cat([phase_0, phase[..., :-1]], dim=-1)
phase_acc = torch.cumsum(phase, -1)
mag = alphas * norm_1 + (1 - alphas) * norm_0
complex_specgrams_stretch = torch.polar(mag, phase_acc)
# unpack batch
complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-2] + complex_specgrams_stretch.shape[1:])
if not is_complex:
return torch.view_as_real(complex_specgrams_stretch)
return complex_specgrams_stretch
[docs]def mask_along_axis_iid(
specgrams: Tensor,
mask_param: int,
mask_value: float,
axis: int
) -> Tensor:
r"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
Args:
specgrams (Tensor): Real spectrograms `(batch, channel, freq, time)`
mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]
mask_value (float): Value to assign to the masked columns
axis (int): Axis to apply masking on (2 -> frequency, 3 -> time)
Returns:
Tensor: Masked spectrograms of dimensions `(batch, channel, freq, time)`
"""
if axis not in [2, 3]:
raise ValueError('Only Frequency and Time masking are supported')
device = specgrams.device
dtype = specgrams.dtype
value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * mask_param
min_value = torch.rand(specgrams.shape[:2], device=device, dtype=dtype) * (specgrams.size(axis) - value)
# Create broadcastable mask
mask_start = min_value[..., None, None]
mask_end = (min_value + value)[..., None, None]
mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype)
# Per batch example masking
specgrams = specgrams.transpose(axis, -1)
specgrams = specgrams.masked_fill((mask >= mask_start) & (mask < mask_end), mask_value)
specgrams = specgrams.transpose(axis, -1)
return specgrams
[docs]def mask_along_axis(
specgram: Tensor,
mask_param: int,
mask_value: float,
axis: int
) -> Tensor:
r"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
All examples will have the same mask interval.
Args:
specgram (Tensor): Real spectrogram `(channel, freq, time)`
mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]
mask_value (float): Value to assign to the masked columns
axis (int): Axis to apply masking on (1 -> frequency, 2 -> time)
Returns:
Tensor: Masked spectrogram of dimensions `(channel, freq, time)`
"""
if axis not in [1, 2]:
raise ValueError('Only Frequency and Time masking are supported')
# pack batch
shape = specgram.size()
specgram = specgram.reshape([-1] + list(shape[-2:]))
value = torch.rand(1) * mask_param
min_value = torch.rand(1) * (specgram.size(axis) - value)
mask_start = (min_value.long()).squeeze()
mask_end = (min_value.long() + value.long()).squeeze()
mask = torch.arange(0, specgram.shape[axis], device=specgram.device, dtype=specgram.dtype)
mask = (mask >= mask_start) & (mask < mask_end)
if axis == 1:
mask = mask.unsqueeze(-1)
assert mask_end - mask_start < mask_param
specgram = specgram.masked_fill(mask, mask_value)
# unpack batch
specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:])
return specgram
[docs]def compute_deltas(
specgram: Tensor,
win_length: int = 5,
mode: str = "replicate"
) -> Tensor:
r"""Compute delta coefficients of a tensor, usually a spectrogram:
.. math::
d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2}
where :math:`d_t` is the deltas at time :math:`t`,
:math:`c_t` is the spectrogram coeffcients at time :math:`t`,
:math:`N` is ``(win_length-1)//2``.
Args:
specgram (Tensor): Tensor of audio of dimension `(..., freq, time)`
win_length (int, optional): The window length used for computing delta (Default: ``5``)
mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``)
Returns:
Tensor: Tensor of deltas of dimension `(..., freq, time)`
Example
>>> specgram = torch.randn(1, 40, 1000)
>>> delta = compute_deltas(specgram)
>>> delta2 = compute_deltas(delta)
"""
device = specgram.device
dtype = specgram.dtype
# pack batch
shape = specgram.size()
specgram = specgram.reshape(1, -1, shape[-1])
assert win_length >= 3
n = (win_length - 1) // 2
# twice sum of integer squared
denom = n * (n + 1) * (2 * n + 1) / 3
specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode)
kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1)
output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom
# unpack batch
output = output.reshape(shape)
return output
def _compute_nccf(
waveform: Tensor,
sample_rate: int,
frame_time: float,
freq_low: int
) -> Tensor:
r"""
Compute Normalized Cross-Correlation Function (NCCF).
.. math::
\phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}},
where
:math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,
:math:`w` is the waveform,
:math:`N` is the length of a frame,
:math:`b_i` is the beginning of frame :math:`i`,
:math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.
"""
EPSILON = 10 ** (-9)
# Number of lags to check
lags = int(math.ceil(sample_rate / freq_low))
frame_size = int(math.ceil(sample_rate * frame_time))
waveform_length = waveform.size()[-1]
num_of_frames = int(math.ceil(waveform_length / frame_size))
p = lags + num_of_frames * frame_size - waveform_length
waveform = torch.nn.functional.pad(waveform, (0, p))
# Compute lags
output_lag = []
for lag in range(1, lags + 1):
s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
output_frames = (
(s1 * s2).sum(-1)
/ (EPSILON + torch.norm(s1, p=2, dim=-1)).pow(2)
/ (EPSILON + torch.norm(s2, p=2, dim=-1)).pow(2)
)
output_lag.append(output_frames.unsqueeze(-1))
nccf = torch.cat(output_lag, -1)
return nccf
def _combine_max(
a: Tuple[Tensor, Tensor],
b: Tuple[Tensor, Tensor],
thresh: float = 0.99
) -> Tuple[Tensor, Tensor]:
"""
Take value from first if bigger than a multiplicative factor of the second, elementwise.
"""
mask = (a[0] > thresh * b[0])
values = mask * a[0] + ~mask * b[0]
indices = mask * a[1] + ~mask * b[1]
return values, indices
def _find_max_per_frame(
nccf: Tensor,
sample_rate: int,
freq_high: int
) -> Tensor:
r"""
For each frame, take the highest value of NCCF,
apply centered median smoothing, and convert to frequency.
Note: If the max among all the lags is very close
to the first half of lags, then the latter is taken.
"""
lag_min = int(math.ceil(sample_rate / freq_high))
# Find near enough max that is smallest
best = torch.max(nccf[..., lag_min:], -1)
half_size = nccf.shape[-1] // 2
half = torch.max(nccf[..., lag_min:half_size], -1)
best = _combine_max(half, best)
indices = best[1]
# Add back minimal lag
indices += lag_min
# Add 1 empirical calibration offset
indices += 1
return indices
def _median_smoothing(
indices: Tensor,
win_length: int
) -> Tensor:
r"""
Apply median smoothing to the 1D tensor over the given window.
"""
# Centered windowed
pad_length = (win_length - 1) // 2
# "replicate" padding in any dimension
indices = torch.nn.functional.pad(
indices, (pad_length, 0), mode="constant", value=0.
)
indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1)
roll = indices.unfold(-1, win_length, 1)
values, _ = torch.median(roll, -1)
return values
[docs]def detect_pitch_frequency(
waveform: Tensor,
sample_rate: int,
frame_time: float = 10 ** (-2),
win_length: int = 30,
freq_low: int = 85,
freq_high: int = 3400,
) -> Tensor:
r"""Detect pitch frequency.
It is implemented using normalized cross-correlation function and median smoothing.
Args:
waveform (Tensor): Tensor of audio of dimension `(..., freq, time)`
sample_rate (int): The sample rate of the waveform (Hz)
frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``).
win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``).
freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``).
freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``).
Returns:
Tensor: Tensor of freq of dimension `(..., frame)`
"""
# pack batch
shape = list(waveform.size())
waveform = waveform.reshape([-1] + shape[-1:])
nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low)
indices = _find_max_per_frame(nccf, sample_rate, freq_high)
indices = _median_smoothing(indices, win_length)
# Convert indices to frequency
EPSILON = 10 ** (-9)
freq = sample_rate / (EPSILON + indices.to(torch.float))
# unpack batch
freq = freq.reshape(shape[:-1] + list(freq.shape[-1:]))
return freq
[docs]def sliding_window_cmn(
specgram: Tensor,
cmn_window: int = 600,
min_cmn_window: int = 100,
center: bool = False,
norm_vars: bool = False,
) -> Tensor:
r"""
Apply sliding-window cepstral mean (and optionally variance) normalization per utterance.
Args:
specgram (Tensor): Tensor of spectrogram of dimension `(..., time, freq)`
cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600)
min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start).
Only applicable if center == false, ignored if center==true (int, default = 100)
center (bool, optional): If true, use a window centered on the current frame
(to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false)
norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false)
Returns:
Tensor: Tensor matching input shape `(..., freq, time)`
"""
input_shape = specgram.shape
num_frames, num_feats = input_shape[-2:]
specgram = specgram.view(-1, num_frames, num_feats)
num_channels = specgram.shape[0]
dtype = specgram.dtype
device = specgram.device
last_window_start = last_window_end = -1
cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
cmn_specgram = torch.zeros(
num_channels, num_frames, num_feats, dtype=dtype, device=device)
for t in range(num_frames):
window_start = 0
window_end = 0
if center:
window_start = t - cmn_window // 2
window_end = window_start + cmn_window
else:
window_start = t - cmn_window
window_end = t + 1
if window_start < 0:
window_end -= window_start
window_start = 0
if not center:
if window_end > t:
window_end = max(t + 1, min_cmn_window)
if window_end > num_frames:
window_start -= (window_end - num_frames)
window_end = num_frames
if window_start < 0:
window_start = 0
if last_window_start == -1:
input_part = specgram[:, window_start: window_end - window_start, :]
cur_sum += torch.sum(input_part, 1)
if norm_vars:
cur_sumsq += torch.cumsum(input_part ** 2, 1)[:, -1, :]
else:
if window_start > last_window_start:
frame_to_remove = specgram[:, last_window_start, :]
cur_sum -= frame_to_remove
if norm_vars:
cur_sumsq -= (frame_to_remove ** 2)
if window_end > last_window_end:
frame_to_add = specgram[:, last_window_end, :]
cur_sum += frame_to_add
if norm_vars:
cur_sumsq += (frame_to_add ** 2)
window_frames = window_end - window_start
last_window_start = window_start
last_window_end = window_end
cmn_specgram[:, t, :] = specgram[:, t, :] - cur_sum / window_frames
if norm_vars:
if window_frames == 1:
cmn_specgram[:, t, :] = torch.zeros(
num_channels, num_feats, dtype=dtype, device=device)
else:
variance = cur_sumsq
variance = variance / window_frames
variance -= ((cur_sum ** 2) / (window_frames ** 2))
variance = torch.pow(variance, -0.5)
cmn_specgram[:, t, :] *= variance
cmn_specgram = cmn_specgram.view(input_shape[:-2] + (num_frames, num_feats))
if len(input_shape) == 2:
cmn_specgram = cmn_specgram.squeeze(0)
return cmn_specgram
[docs]def spectral_centroid(
waveform: Tensor,
sample_rate: int,
pad: int,
window: Tensor,
n_fft: int,
hop_length: int,
win_length: int,
) -> Tensor:
r"""
Compute the spectral centroid for each channel along the time axis.
The spectral centroid is defined as the weighted average of the
frequency values, weighted by their magnitude.
Args:
waveform (Tensor): Tensor of audio of dimension `(..., time)`
sample_rate (int): Sample rate of the audio waveform
pad (int): Two sided padding of signal
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT
hop_length (int): Length of hop between STFT windows
win_length (int): Window size
Returns:
Tensor: Dimension `(..., time)`
"""
specgram = spectrogram(waveform, pad=pad, window=window, n_fft=n_fft, hop_length=hop_length,
win_length=win_length, power=1., normalized=False)
freqs = torch.linspace(0, sample_rate // 2, steps=1 + n_fft // 2,
device=specgram.device).reshape((-1, 1))
freq_dim = -2
return (freqs * specgram).sum(dim=freq_dim) / specgram.sum(dim=freq_dim)
[docs]@_mod_utils.requires_sox()
def apply_codec(
waveform: Tensor,
sample_rate: int,
format: str,
channels_first: bool = True,
compression: Optional[float] = None,
encoding: Optional[str] = None,
bits_per_sample: Optional[int] = None,
) -> Tensor:
r"""
Apply codecs as a form of augmentation.
Args:
waveform (Tensor): Audio data. Must be 2 dimensional. See also ```channels_first```.
sample_rate (int): Sample rate of the audio waveform.
format (str): File format.
channels_first (bool, optional):
When True, both the input and output Tensor have dimension `(channel, time)`.
Otherwise, they have dimension `(time, channel)`.
compression (float or None, optional): Used for formats other than WAV.
For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.
encoding (str or None, optional): Changes the encoding for the supported formats.
For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.
bits_per_sample (int or None, optional): Changes the bit depth for the supported formats.
For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.
Returns:
Tensor: Resulting Tensor.
If ``channels_first=True``, it has `(channel, time)` else `(time, channel)`.
"""
bytes = io.BytesIO()
torchaudio.backend.sox_io_backend.save(bytes,
waveform,
sample_rate,
channels_first,
compression,
format,
encoding,
bits_per_sample
)
bytes.seek(0)
augmented, _ = torchaudio.sox_effects.sox_effects.apply_effects_file(
bytes, effects=[["rate", f"{sample_rate}"]], channels_first=channels_first, format=format)
return augmented
[docs]@_mod_utils.requires_kaldi()
def compute_kaldi_pitch(
waveform: torch.Tensor,
sample_rate: float,
frame_length: float = 25.0,
frame_shift: float = 10.0,
min_f0: float = 50,
max_f0: float = 400,
soft_min_f0: float = 10.0,
penalty_factor: float = 0.1,
lowpass_cutoff: float = 1000,
resample_frequency: float = 4000,
delta_pitch: float = 0.005,
nccf_ballast: float = 7000,
lowpass_filter_width: int = 1,
upsample_filter_width: int = 5,
max_frames_latency: int = 0,
frames_per_chunk: int = 0,
simulate_first_pass_online: bool = False,
recompute_frame: int = 500,
snip_edges: bool = True,
) -> torch.Tensor:
"""Extract pitch based on method described in *A pitch extraction algorithm tuned
for automatic speech recognition* [:footcite:`6854049`].
This function computes the equivalent of `compute-kaldi-pitch-feats` from Kaldi.
Args:
waveform (Tensor):
The input waveform of shape `(..., time)`.
sample_rate (float):
Sample rate of `waveform`.
frame_length (float, optional):
Frame length in milliseconds. (default: 25.0)
frame_shift (float, optional):
Frame shift in milliseconds. (default: 10.0)
min_f0 (float, optional):
Minimum F0 to search for (Hz) (default: 50.0)
max_f0 (float, optional):
Maximum F0 to search for (Hz) (default: 400.0)
soft_min_f0 (float, optional):
Minimum f0, applied in soft way, must not exceed min-f0 (default: 10.0)
penalty_factor (float, optional):
Cost factor for FO change. (default: 0.1)
lowpass_cutoff (float, optional):
Cutoff frequency for LowPass filter (Hz) (default: 1000)
resample_frequency (float, optional):
Frequency that we down-sample the signal to. Must be more than twice lowpass-cutoff.
(default: 4000)
delta_pitch( float, optional):
Smallest relative change in pitch that our algorithm measures. (default: 0.005)
nccf_ballast (float, optional):
Increasing this factor reduces NCCF for quiet frames (default: 7000)
lowpass_filter_width (int, optional):
Integer that determines filter width of lowpass filter, more gives sharper filter.
(default: 1)
upsample_filter_width (int, optional):
Integer that determines filter width when upsampling NCCF. (default: 5)
max_frames_latency (int, optional):
Maximum number of frames of latency that we allow pitch tracking to introduce into
the feature processing (affects output only if ``frames_per_chunk > 0`` and
``simulate_first_pass_online=True``) (default: 0)
frames_per_chunk (int, optional):
The number of frames used for energy normalization. (default: 0)
simulate_first_pass_online (bool, optional):
If true, the function will output features that correspond to what an online decoder
would see in the first pass of decoding -- not the final version of the features,
which is the default. (default: False)
Relevant if ``frames_per_chunk > 0``.
recompute_frame (int, optional):
Only relevant for compatibility with online pitch extraction.
A non-critical parameter; the frame at which we recompute some of the forward pointers,
after revising our estimate of the signal energy.
Relevant if ``frames_per_chunk > 0``. (default: 500)
snip_edges (bool, optional):
If this is set to false, the incomplete frames near the ending edge won't be snipped,
so that the number of frames is the file size divided by the frame-shift.
This makes different types of features give the same number of frames. (default: True)
Returns:
Tensor: Pitch feature. Shape: `(batch, frames 2)` where the last dimension
corresponds to pitch and NCCF.
"""
shape = waveform.shape
waveform = waveform.reshape(-1, shape[-1])
result = torch.ops.torchaudio.kaldi_ComputeKaldiPitch(
waveform, sample_rate, frame_length, frame_shift,
min_f0, max_f0, soft_min_f0, penalty_factor, lowpass_cutoff,
resample_frequency, delta_pitch, nccf_ballast,
lowpass_filter_width, upsample_filter_width, max_frames_latency,
frames_per_chunk, simulate_first_pass_online, recompute_frame,
snip_edges,
)
result = result.reshape(shape[:-1] + result.shape[-2:])
return result
def _get_sinc_resample_kernel(
orig_freq: int,
new_freq: int,
gcd: int,
lowpass_filter_width: int,
rolloff: float,
resampling_method: str,
beta: Optional[float],
device: torch.device = torch.device("cpu"),
dtype: Optional[torch.dtype] = None):
if not (int(orig_freq) == orig_freq and int(new_freq) == new_freq):
raise Exception(
"Frequencies must be of integer type to ensure quality resampling computation. "
"To work around this, manually convert both frequencies to integer values "
"that maintain their resampling rate ratio before passing them into the function. "
"Example: To downsample a 44100 hz waveform by a factor of 8, use "
"`orig_freq=8` and `new_freq=1` instead of `orig_freq=44100` and `new_freq=5512.5`. "
"For more information, please refer to https://github.com/pytorch/audio/issues/1487."
)
if resampling_method not in ['sinc_interpolation', 'kaiser_window']:
raise ValueError('Invalid resampling method: {}'.format(resampling_method))
orig_freq = int(orig_freq) // gcd
new_freq = int(new_freq) // gcd
assert lowpass_filter_width > 0
kernels = []
base_freq = min(orig_freq, new_freq)
# This will perform antialiasing filtering by removing the highest frequencies.
# At first I thought I only needed this when downsampling, but when upsampling
# you will get edge artifacts without this, as the edge is equivalent to zero padding,
# which will add high freq artifacts.
base_freq *= rolloff
# The key idea of the algorithm is that x(t) can be exactly reconstructed from x[i] (tensor)
# using the sinc interpolation formula:
# x(t) = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - t))
# We can then sample the function x(t) with a different sample rate:
# y[j] = x(j / new_freq)
# or,
# y[j] = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
# We see here that y[j] is the convolution of x[i] with a specific filter, for which
# we take an FIR approximation, stopping when we see at least `lowpass_filter_width` zeros crossing.
# But y[j+1] is going to have a different set of weights and so on, until y[j + new_freq].
# Indeed:
# y[j + new_freq] = sum_i x[i] sinc(pi * orig_freq * ((i / orig_freq - (j + new_freq) / new_freq))
# = sum_i x[i] sinc(pi * orig_freq * ((i - orig_freq) / orig_freq - j / new_freq))
# = sum_i x[i + orig_freq] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
# so y[j+new_freq] uses the same filter as y[j], but on a shifted version of x by `orig_freq`.
# This will explain the F.conv1d after, with a stride of orig_freq.
width = math.ceil(lowpass_filter_width * orig_freq / base_freq)
# If orig_freq is still big after GCD reduction, most filters will be very unbalanced, i.e.,
# they will have a lot of almost zero values to the left or to the right...
# There is probably a way to evaluate those filters more efficiently, but this is kept for
# future work.
idx_dtype = dtype if dtype is not None else torch.float64
idx = torch.arange(-width, width + orig_freq, device=device, dtype=idx_dtype)
for i in range(new_freq):
t = (-i / new_freq + idx / orig_freq) * base_freq
t = t.clamp_(-lowpass_filter_width, lowpass_filter_width)
# we do not use built in torch windows here as we need to evaluate the window
# at specific positions, not over a regular grid.
if resampling_method == "sinc_interpolation":
window = torch.cos(t * math.pi / lowpass_filter_width / 2)**2
else:
# kaiser_window
if beta is None:
beta = 14.769656459379492
beta_tensor = torch.tensor(float(beta))
window = torch.i0(beta_tensor * torch.sqrt(1 - (t / lowpass_filter_width) ** 2)) / torch.i0(beta_tensor)
t *= math.pi
kernel = torch.where(t == 0, torch.tensor(1.).to(t), torch.sin(t) / t)
kernel.mul_(window)
kernels.append(kernel)
scale = base_freq / orig_freq
kernels = torch.stack(kernels).view(new_freq, 1, -1).mul_(scale)
if dtype is None:
kernels = kernels.to(dtype=torch.float32)
return kernels, width
def _apply_sinc_resample_kernel(
waveform: Tensor,
orig_freq: int,
new_freq: int,
gcd: int,
kernel: Tensor,
width: int,
):
orig_freq = int(orig_freq) // gcd
new_freq = int(new_freq) // gcd
# pack batch
shape = waveform.size()
waveform = waveform.view(-1, shape[-1])
num_wavs, length = waveform.shape
waveform = torch.nn.functional.pad(waveform, (width, width + orig_freq))
resampled = torch.nn.functional.conv1d(waveform[:, None], kernel, stride=orig_freq)
resampled = resampled.transpose(1, 2).reshape(num_wavs, -1)
target_length = int(math.ceil(new_freq * length / orig_freq))
resampled = resampled[..., :target_length]
# unpack batch
resampled = resampled.view(shape[:-1] + resampled.shape[-1:])
return resampled
[docs]def resample(
waveform: Tensor,
orig_freq: int,
new_freq: int,
lowpass_filter_width: int = 6,
rolloff: float = 0.99,
resampling_method: str = "sinc_interpolation",
beta: Optional[float] = None,
) -> Tensor:
r"""Resamples the waveform at the new frequency using bandlimited interpolation.
https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html
Note:
``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in
more efficient computation if resampling multiple waveforms with the same resampling parameters.
Args:
waveform (Tensor): The input signal of dimension `(..., time)`
orig_freq (int): The original frequency of the signal
new_freq (int): The desired frequency
lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper
but less efficient. (Default: ``6``)
rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist.
Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``)
resampling_method (str, optional): The resampling method to use.
Options: [``sinc_interpolation``, ``kaiser_window``] (Default: ``'sinc_interpolation'``)
beta (float or None, optional): The shape parameter used for kaiser window.
Returns:
Tensor: The waveform at the new frequency of dimension `(..., time).`
"""
assert orig_freq > 0.0 and new_freq > 0.0
if orig_freq == new_freq:
return waveform
gcd = math.gcd(int(orig_freq), int(new_freq))
kernel, width = _get_sinc_resample_kernel(orig_freq, new_freq, gcd, lowpass_filter_width, rolloff,
resampling_method, beta, waveform.device, waveform.dtype)
resampled = _apply_sinc_resample_kernel(waveform, orig_freq, new_freq, gcd, kernel, width)
return resampled
[docs]@torch.jit.unused
def edit_distance(seq1: Sequence, seq2: Sequence) -> int:
"""
Calculate the word level edit (Levenshtein) distance between two sequences.
The function computes an edit distance allowing deletion, insertion and
substitution. The result is an integer.
For most applications, the two input sequences should be the same type. If
two strings are given, the output is the edit distance between the two
strings (character edit distance). If two lists of strings are given, the
output is the edit distance between sentences (word edit distance). Users
may want to normalize the output by the length of the reference sequence.
torchscipt is not supported for this function.
Args:
seq1 (Sequence): the first sequence to compare.
seq2 (Sequence): the second sequence to compare.
Returns:
int: The distance between the first and second sequences.
"""
len_sent2 = len(seq2)
dold = list(range(len_sent2 + 1))
dnew = [0 for _ in range(len_sent2 + 1)]
for i in range(1, len(seq1) + 1):
dnew[0] = i
for j in range(1, len_sent2 + 1):
if seq1[i - 1] == seq2[j - 1]:
dnew[j] = dold[j - 1]
else:
substitution = dold[j - 1] + 1
insertion = dnew[j - 1] + 1
deletion = dold[j] + 1
dnew[j] = min(substitution, insertion, deletion)
dnew, dold = dold, dnew
return int(dold[-1])
[docs]def pitch_shift(
waveform: Tensor,
sample_rate: int,
n_steps: int,
bins_per_octave: int = 12,
n_fft: int = 512,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
window: Optional[Tensor] = None,
) -> Tensor:
"""
Shift the pitch of a waveform by ``n_steps`` steps.
Args:
waveform (Tensor): The input waveform of shape `(..., time)`.
sample_rate (int): Sample rate of `waveform`.
n_steps (int): The (fractional) steps to shift `waveform`.
bins_per_octave (int, optional): The number of steps per octave (Default: ``12``).
n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).
win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).
hop_length (int or None, optional): Length of hop between STFT windows. If None, then
``win_length // 4`` is used (Default: ``None``).
window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.
If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).
Returns:
Tensor: The pitch-shifted audio waveform of shape `(..., time)`.
"""
if hop_length is None:
hop_length = n_fft // 4
if win_length is None:
win_length = n_fft
if window is None:
window = torch.hann_window(window_length=win_length, device=waveform.device)
# pack batch
shape = waveform.size()
waveform = waveform.reshape(-1, shape[-1])
ori_len = shape[-1]
rate = 2.0 ** (-float(n_steps) / bins_per_octave)
spec_f = torch.stft(input=waveform,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True)
phase_advance = torch.linspace(0, math.pi * hop_length, spec_f.shape[-2], device=spec_f.device)[..., None]
spec_stretch = phase_vocoder(spec_f, rate, phase_advance)
len_stretch = int(round(ori_len / rate))
waveform_stretch = torch.istft(spec_stretch,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
length=len_stretch)
waveform_shift = resample(waveform_stretch, int(sample_rate / rate), sample_rate)
shift_len = waveform_shift.size()[-1]
if shift_len > ori_len:
waveform_shift = waveform_shift[..., :ori_len]
else:
waveform_shift = torch.nn.functional.pad(waveform_shift, [0, ori_len - shift_len])
# unpack batch
waveform_shift = waveform_shift.view(shape[:-1] + waveform_shift.shape[-1:])
return waveform_shift
[docs]def rnnt_loss(
logits: Tensor,
targets: Tensor,
logit_lengths: Tensor,
target_lengths: Tensor,
blank: int = -1,
clamp: float = -1,
reduction: str = "mean",
):
"""Compute the RNN Transducer loss from *Sequence Transduction with Recurrent Neural Networks*
[:footcite:`graves2012sequence`].
The RNN Transducer loss extends the CTC loss by defining a distribution over output
sequences of all lengths, and by jointly modelling both input-output and output-output
dependencies.
Args:
logits (Tensor): Tensor of dimension `(batch, max seq length, max target length + 1, class)`
containing output from joiner
targets (Tensor): Tensor of dimension `(batch, max target length)` containing targets with zero padded
logit_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of each sequence from encoder
target_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of targets for each sequence
blank (int, optional): blank label (Default: ``-1``)
clamp (float, optional): clamp for gradients (Default: ``-1``)
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
Returns:
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size `(batch)`,
otherwise scalar.
"""
if reduction not in ['none', 'mean', 'sum']:
raise ValueError("reduction should be one of 'none', 'mean', or 'sum'")
if blank < 0: # reinterpret blank index if blank < 0.
blank = logits.shape[-1] + blank
costs, _ = torch.ops.torchaudio.rnnt_loss(
logits=logits,
targets=targets,
logit_lengths=logit_lengths,
target_lengths=target_lengths,
blank=blank,
clamp=clamp,
)
if reduction == 'mean':
return costs.mean()
elif reduction == 'sum':
return costs.sum()
return costs