Shortcuts

Source code for torchaudio.datasets.commonvoice

import csv
import os
from pathlib import Path
from typing import List, Dict, Tuple, Union

from torch import Tensor
from torch.utils.data import Dataset

import torchaudio


def load_commonvoice_item(line: List[str],
                          header: List[str],
                          path: str,
                          folder_audio: str,
                          ext_audio: str) -> Tuple[Tensor, int, Dict[str, str]]:
    # Each line as the following data:
    # client_id, path, sentence, up_votes, down_votes, age, gender, accent

    assert header[1] == "path"
    fileid = line[1]
    filename = os.path.join(path, folder_audio, fileid)
    if not filename.endswith(ext_audio):
        filename += ext_audio
    waveform, sample_rate = torchaudio.load(filename)

    dic = dict(zip(header, line))

    return waveform, sample_rate, dic


[docs]class COMMONVOICE(Dataset): """Create a Dataset for CommonVoice. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker)
[docs] def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Dict[str, str]): ``(waveform, sample_rate, dictionary)``, where dictionary is built from the TSV file with the following keys: ``client_id``, ``path``, ``sentence``, ``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``. """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio)
def __len__(self) -> int: return len(self._walker)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources