Shortcuts

Source code for torch.optim.asgd

import torch
from torch import Tensor

from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _default_to_fused_or_foreach,
                        _get_scalar_dtype, _view_as_real, _differentiable_doc, _foreach_doc, _maximize_doc,
                        _capturable_doc)
from typing import List, Optional

__all__ = ["ASGD", "asgd"]

def _to_tensor(x, device=None):
    if not isinstance(x, torch.Tensor):
        return torch.tensor(x, device=device)

    return x

[docs]class ASGD(Optimizer): def __init__( self, params, lr=1e-2, lambd=1e-4, alpha=0.75, t0=1e6, weight_decay=0, foreach: Optional[bool] = None, maximize: bool = False, differentiable: bool = False, capturable: bool = False, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict( lr=lr, lambd=lambd, alpha=alpha, t0=t0, weight_decay=weight_decay, foreach=foreach, maximize=maximize, differentiable=differentiable, capturable=capturable, ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault("foreach", None) group.setdefault("maximize", False) group.setdefault("differentiable", False) group.setdefault("capturable", False) for p in group["params"]: p_state = self.state.get(p, []) if len(p_state) != 0: if not torch.is_tensor(p_state['step']): step_val = float(p_state["step"]) p_state["step"] = torch.tensor(step_val, dtype=_get_scalar_dtype(), device=p.device) if not torch.is_tensor(p_state["eta"]): p_state["eta"] = torch.tensor(p_state["eta"], dtype=_get_scalar_dtype(), device=p.device) if not torch.is_tensor(p_state["mu"]): p_state["mu"] = torch.tensor(p_state["mu"], dtype=_get_scalar_dtype(), device=p.device) def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps): has_complex = False for p in group["params"]: if p.grad is not None: has_complex |= torch.is_complex(p) params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError("ASGD does not support sparse gradients") grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state["step"] = torch.zeros((), device=p.device, dtype=_get_scalar_dtype()) state["eta"] = torch.tensor(group["lr"], device=p.device, dtype=_get_scalar_dtype()) state["mu"] = torch.ones((), device=p.device, dtype=_get_scalar_dtype()) state["ax"] = torch.zeros_like( p, memory_format=torch.preserve_format ) mus.append(state["mu"]) axs.append(state["ax"]) etas.append(state["eta"]) state_steps.append(state["step"]) return has_complex
[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """ self._cuda_graph_capture_health_check() loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] mus = [] axs = [] etas = [] state_steps = [] has_complex = self._init_group(group, params_with_grad, grads, mus, axs, etas, state_steps) asgd( params_with_grad, grads, axs, mus, etas, state_steps, lambd=group["lambd"], lr=group["lr"], t0=group["t0"], alpha=group["alpha"], weight_decay=group["weight_decay"], foreach=group["foreach"], maximize=group["maximize"], differentiable=group["differentiable"], capturable=group["capturable"], has_complex=has_complex, ) return loss
ASGD.__doc__ = fr"""Implements Averaged Stochastic Gradient Descent. It has been proposed in `Acceleration of stochastic approximation by averaging`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) lambd (float, optional): decay term (default: 1e-4) alpha (float, optional): power for eta update (default: 0.75) t0 (float, optional): point at which to start averaging (default: 1e6) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) {_foreach_doc} {_maximize_doc} {_differentiable_doc} {_capturable_doc} .. _Acceleration of stochastic approximation by averaging: https://dl.acm.org/citation.cfm?id=131098 """ def asgd( params: List[Tensor], grads: List[Tensor], axs: List[Tensor], mus: List[Tensor], etas: List[Tensor], state_steps: List[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim foreach: Optional[bool] = None, maximize: bool = False, differentiable: bool = False, capturable: bool = False, has_complex: bool = False, *, lambd: float, lr: float, t0: float, alpha: float, weight_decay: float, ): r"""Functional API that performs asgd algorithm computation. See :class:`~torch.optim.ASGD` for details. """ if foreach is None: _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False) if foreach and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with foreach optimizers") if foreach and not torch.jit.is_scripting(): func = _multi_tensor_asgd else: func = _single_tensor_asgd func( params, grads, axs, mus, etas, state_steps, lambd=lambd, lr=lr, t0=t0, alpha=alpha, weight_decay=weight_decay, maximize=maximize, differentiable=differentiable, capturable=capturable, has_complex=has_complex, ) def _single_tensor_asgd( params: List[Tensor], grads: List[Tensor], axs: List[Tensor], mus: List[Tensor], etas: List[Tensor], state_steps: List[Tensor], *, lambd: float, lr: float, t0: float, alpha: float, weight_decay: float, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): for i, param in enumerate(params): grad = grads[i] grad = grad if not maximize else -grad mu = mus[i] ax = axs[i] eta = etas[i] step_t = state_steps[i] # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch._utils.is_compiling() and capturable: assert (param.is_cuda and mu.is_cuda and eta.is_cuda and step_t.is_cuda) or ( param.is_xla and mu.is_xla and eta.is_xla and step_t.is_xla ), "If capturable=True, params, mus, etas, and state_steps must be CUDA or XLA tensors." if torch.is_complex(param): grad = torch.view_as_real(grad) param = torch.view_as_real(param) ax = torch.view_as_real(ax) # update step step_t += 1 if weight_decay != 0: grad = grad.add(param, alpha=weight_decay) if capturable: param.mul_(1 - lambd * eta) param.addcmul_(grad, eta, value=-1) # update parameter else: eta_value = _get_value(eta) param.mul_(1 - lambd * eta_value) # decay term param.add_(grad, alpha=-eta_value) # update parameter # averaging if capturable or mu.item() != 1: ax.add_(param.sub(ax).mul_(mu)) else: ax.copy_(param) if capturable: eta.copy_(lr / ((1 + lambd * lr * step_t) ** alpha)) mu.copy_(1 / torch.maximum(step_t - t0, torch.ones_like(step_t))) else: step = _get_value(step_t) new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha)) eta.copy_(new_eta) new_mu = _to_tensor(1 / max(1, step - t0)) mu.copy_(new_mu) def _multi_tensor_asgd( params: List[Tensor], grads: List[Tensor], axs: List[Tensor], mus: List[Tensor], etas: List[Tensor], state_steps: List[Tensor], *, lambd: float, lr: float, t0: float, alpha: float, weight_decay: float, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): if len(params) == 0: return assert not differentiable, "_foreach ops don't support autograd" # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch._utils.is_compiling() and capturable: assert all(p.is_cuda and mu.is_cuda and eta.is_cuda and step.is_cuda for p, mu, eta, step in zip(params, mus, etas, state_steps)), \ "If capturable=True, params, mus, etas, and state_steps must be CUDA tensors." grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, axs, mus, etas, state_steps]) for ((device, _), ((grouped_params, grouped_grads, grouped_axs, grouped_mus, grouped_etas, grouped_state_steps), _)) in grouped_tensors.items(): if has_complex: _view_as_real(grouped_params, grouped_grads, grouped_axs) if maximize: grouped_grads = torch._foreach_neg(grouped_grads) # Update steps # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just # wrapped it once now. The alpha is required to assure we go to the right overload. if grouped_state_steps[0].is_cpu: torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0) else: torch._foreach_add_(grouped_state_steps, 1) # intermediate = grad + param * lambd if weight_decay != 0: if maximize: torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) intermediate = grouped_grads else: intermediate = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay) torch._foreach_add_(intermediate, grouped_params, alpha=lambd) else: intermediate = torch._foreach_add(grouped_grads, grouped_params, alpha=lambd) # update param # param * (1 - lambd * eta) - eta * grad # => param - param * lambd * eta - eta * grad # => param - eta * intermediate torch._foreach_addcmul_(grouped_params, intermediate, grouped_etas, value=-1) del intermediate # update grouped_axs # averaging: ax = ax + mu * (param - ax) # Note (mlazos): We can't use lerp here since it requires weight to be float64 # and our grouping code requires dtypes to match for all tensors in a group (and it should, since # we use the mus in other places) # all dtypes need to match, so we could introduce a cast in a loop # but since this only adds one additional kernel launch, this looks like the cleaner # and faster solution intermediate = torch._foreach_sub(grouped_params, grouped_axs) torch._foreach_addcmul_(grouped_axs, intermediate, grouped_mus) del intermediate if capturable: # update grouped_mus new_mus = torch._foreach_sub(grouped_state_steps, t0) torch._foreach_maximum_(new_mus, 1.0) torch._foreach_reciprocal_(new_mus) torch._foreach_copy_(grouped_mus, new_mus) del new_mus # update eta = lr / (1 + lambd * lr * step^alpha) new_etas = torch._foreach_pow(grouped_state_steps, alpha) torch._foreach_mul_(new_etas, lambd) torch._foreach_mul_(new_etas, lr) torch._foreach_add_(new_etas, 1) torch._foreach_reciprocal_(new_etas) torch._foreach_mul_(new_etas, lr) torch._foreach_copy_(grouped_etas, new_etas) else: step = grouped_state_steps[0].item() new_etas = [] new_mus = [] for i in range(len(grouped_mus)): new_eta = _to_tensor( lr / (1 + lambd * lr * step ** alpha), device=device ) new_etas.append(new_eta) new_mu = _to_tensor(1 / max(1, step - t0), device=device) new_mus.append(new_mu) torch._foreach_copy_(grouped_etas, new_etas) torch._foreach_copy_(grouped_mus, new_mus)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources