Shortcuts

Pads the input tensor boundaries with zero.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in both boundaries. If a 2-tuple, uses ($\text{padding\_left}$, $\text{padding\_right}$)

Shape:
• Input: $(C, W_{in})$ or $(N, C, W_{in})$.

• Output: $(C, W_{out})$ or $(N, C, W_{out})$, where

$W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}$

Examples:

>>> m = nn.ZeroPad1d(2)
>>> input = torch.randn(1, 2, 4)
>>> input
tensor([[[-1.0491, -0.7152, -0.0749,  0.8530],
[-1.3287,  1.8966,  0.1466, -0.2771]]])
>>> m(input)
tensor([[[ 0.0000,  0.0000, -1.0491, -0.7152, -0.0749,  0.8530,  0.0000,
0.0000],
[ 0.0000,  0.0000, -1.3287,  1.8966,  0.1466, -0.2771,  0.0000,
0.0000]]])
>>> input = torch.randn(1, 2, 3)
>>> input
tensor([[[ 1.6616,  1.4523, -1.1255],
[-3.6372,  0.1182, -1.8652]]])
>>> m(input)
tensor([[[ 0.0000,  0.0000,  1.6616,  1.4523, -1.1255,  0.0000,  0.0000],
[ 0.0000,  0.0000, -3.6372,  0.1182, -1.8652,  0.0000,  0.0000]]])
>>> # using different paddings for different sides
>>> m(input)
tensor([[[ 0.0000,  0.0000,  0.0000,  1.6616,  1.4523, -1.1255,  0.0000],
[ 0.0000,  0.0000,  0.0000, -3.6372,  0.1182, -1.8652,  0.0000]]])


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials