torch.Tensor.scatter_add_
- Tensor.scatter_add_(dim, index, src) Tensor
Adds all values from the tensor
src
intoself
at the indices specified in theindex
tensor in a similar fashion asscatter_()
. For each value insrc
, it is added to an index inself
which is specified by its index insrc
fordimension != dim
and by the corresponding value inindex
fordimension = dim
.For a 3-D tensor,
self
is updated as:self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2
self
,index
andsrc
should have same number of dimensions. It is also required thatindex.size(d) <= src.size(d)
for all dimensionsd
, and thatindex.size(d) <= self.size(d)
for all dimensionsd != dim
. Note thatindex
andsrc
do not broadcast.Note
This operation may behave nondeterministically when given tensors on a CUDA device. See Reproducibility for more information.
Note
The backward pass is implemented only for
src.shape == index.shape
.- Parameters
Example:
>>> src = torch.ones((2, 5)) >>> index = torch.tensor([[0, 1, 2, 0, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) tensor([[1., 0., 0., 1., 1.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.]]) >>> index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 2, 2, 2]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) tensor([[2., 0., 0., 1., 1.], [0., 2., 0., 0., 0.], [0., 0., 2., 1., 1.]])