Shortcuts

# Source code for torch.distributions.half_cauchy

import math

import torch
from torch import inf
from torch.distributions import constraints
from torch.distributions.cauchy import Cauchy
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AbsTransform

__all__ = ["HalfCauchy"]

[docs]class HalfCauchy(TransformedDistribution):
r"""
Creates a half-Cauchy distribution parameterized by scale where::

X ~ Cauchy(0, scale)
Y = |X| ~ HalfCauchy(scale)

Example::

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = HalfCauchy(torch.tensor([1.0]))
>>> m.sample()  # half-cauchy distributed with scale=1
tensor([ 2.3214])

Args:
scale (float or Tensor): scale of the full Cauchy distribution
"""
arg_constraints = {"scale": constraints.positive}
support = constraints.nonnegative
has_rsample = True

def __init__(self, scale, validate_args=None):
base_dist = Cauchy(0, scale, validate_args=False)
super().__init__(base_dist, AbsTransform(), validate_args=validate_args)

[docs]    def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(HalfCauchy, _instance)
return super().expand(batch_shape, _instance=new)

@property
def scale(self):
return self.base_dist.scale

@property
def mean(self):
self._extended_shape(),
math.inf,
dtype=self.scale.dtype,
device=self.scale.device,
)

@property
def mode(self):

@property
def variance(self):
return self.base_dist.variance

[docs]    def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
value = torch.as_tensor(
value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device
)
log_prob = self.base_dist.log_prob(value) + math.log(2)
log_prob = torch.where(value >= 0, log_prob, -inf)
return log_prob

[docs]    def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return 2 * self.base_dist.cdf(value) - 1

[docs]    def icdf(self, prob):
return self.base_dist.icdf((prob + 1) / 2)

[docs]    def entropy(self):
return self.base_dist.entropy() - math.log(2)


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials