torch.repeat_interleave¶
- torch.repeat_interleave(input, repeats, dim=None, *, output_size=None) Tensor ¶
Repeat elements of a tensor.
Warning
This is different from
torch.Tensor.repeat()
but similar tonumpy.repeat
.- Parameters:
input (Tensor) – the input tensor.
repeats (Tensor or int) – The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
dim (int, optional) – The dimension along which to repeat values. By default, use the flattened input array, and return a flat output array.
- Keyword Arguments:
output_size (int, optional) – Total output size for the given axis ( e.g. sum of repeats). If given, it will avoid stream synchronization needed to calculate output shape of the tensor.
- Returns:
Repeated tensor which has the same shape as input, except along the given axis.
- Return type:
Example:
>>> x = torch.tensor([1, 2, 3]) >>> x.repeat_interleave(2) tensor([1, 1, 2, 2, 3, 3]) >>> y = torch.tensor([[1, 2], [3, 4]]) >>> torch.repeat_interleave(y, 2) tensor([1, 1, 2, 2, 3, 3, 4, 4]) >>> torch.repeat_interleave(y, 3, dim=1) tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) tensor([[1, 2], [3, 4], [3, 4]]) >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) tensor([[1, 2], [3, 4], [3, 4]])
- torch.repeat_interleave(repeats, *, output_size=None) Tensor
If the repeats is tensor([n1, n2, n3, …]), then the output will be tensor([0, 0, …, 1, 1, …, 2, 2, …, …]) where 0 appears n1 times, 1 appears n2 times, 2 appears n3 times, etc.