Shortcuts

torch.randn

torch.randn(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) Tensor

Returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution).

outiN(0,1)\text{out}_{i} \sim \mathcal{N}(0, 1)

The shape of the tensor is defined by the variable argument size.

Parameters:

size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.

Keyword Arguments:
  • generator (torch.Generator, optional) – a pseudorandom number generator for sampling

  • out (Tensor, optional) – the output tensor.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

  • pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False.

Example:

>>> torch.randn(4)
tensor([-2.1436,  0.9966,  2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954,  2.8929, -1.0923],
        [ 1.1719, -0.4709, -0.1996]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources