Shortcuts

torch.quantized_max_pool2d

torch.quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) Tensor

Applies a 2D max pooling over an input quantized tensor composed of several input planes.

Parameters:
  • input (Tensor) – quantized tensor

  • kernel_size (list of int) – the size of the sliding window

  • stride (list of int, optional) – the stride of the sliding window

  • padding (list of int, optional) – padding to be added on both sides, must be >= 0 and <= kernel_size / 2

  • dilation (list of int, optional) – The stride between elements within a sliding window, must be > 0. Default 1

  • ceil_mode (bool, optional) – If True, will use ceil instead of floor to compute the output shape. Defaults to False.

Returns:

A quantized tensor with max_pool2d applied.

Return type:

Tensor

Example:

>>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8)
>>> torch.quantized_max_pool2d(qx, [2,2])
tensor([[[[1.5000]],

        [[1.5000]]],


        [[[0.0000]],

        [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8,
    quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources