Shortcuts

torch.quantized_batch_norm

torch.quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) Tensor

Applies batch normalization on a 4D (NCHW) quantized tensor.

y=xE[x]Var[x]+ϵγ+βy = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
Parameters:
  • input (Tensor) – quantized tensor

  • weight (Tensor) – float tensor that corresponds to the gamma, size C

  • bias (Tensor) – float tensor that corresponds to the beta, size C

  • mean (Tensor) – float mean value in batch normalization, size C

  • var (Tensor) – float tensor for variance, size C

  • eps (float) – a value added to the denominator for numerical stability.

  • output_scale (float) – output quantized tensor scale

  • output_zero_point (int) – output quantized tensor zero_point

Returns:

A quantized tensor with batch normalization applied.

Return type:

Tensor

Example:

>>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8)
>>> torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2)
tensor([[[[-0.2000, -0.2000],
      [ 1.6000, -0.2000]],

     [[-0.4000, -0.4000],
      [-0.4000,  0.6000]]],


    [[[-0.2000, -0.2000],
      [-0.2000, -0.2000]],

     [[ 0.6000, -0.4000],
      [ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8,
   quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources