torch.quantized_batch_norm¶
- torch.quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) Tensor ¶
Applies batch normalization on a 4D (NCHW) quantized tensor.
- Parameters:
input (Tensor) – quantized tensor
weight (Tensor) – float tensor that corresponds to the gamma, size C
bias (Tensor) – float tensor that corresponds to the beta, size C
mean (Tensor) – float mean value in batch normalization, size C
var (Tensor) – float tensor for variance, size C
eps (float) – a value added to the denominator for numerical stability.
output_scale (float) – output quantized tensor scale
output_zero_point (int) – output quantized tensor zero_point
- Returns:
A quantized tensor with batch normalization applied.
- Return type:
Example:
>>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) >>> torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2) tensor([[[[-0.2000, -0.2000], [ 1.6000, -0.2000]], [[-0.4000, -0.4000], [-0.4000, 0.6000]]], [[[-0.2000, -0.2000], [-0.2000, -0.2000]], [[ 0.6000, -0.4000], [ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2)