Shortcuts

torch.logspace

torch.logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor

Creates a one-dimensional tensor of size steps whose values are evenly spaced from basestart{{\text{{base}}}}^{{\text{{start}}}} to baseend{{\text{{base}}}}^{{\text{{end}}}}, inclusive, on a logarithmic scale with base base. That is, the values are:

(basestart,base(start+endstartsteps1),,base(start+(steps2)endstartsteps1),baseend)(\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}})

From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior.

Parameters:
  • start (float) – the starting value for the set of points

  • end (float) – the ending value for the set of points

  • steps (int) – size of the constructed tensor

  • base (float, optional) – base of the logarithm function. Default: 10.0.

Keyword Arguments:
  • out (Tensor, optional) – the output tensor.

  • dtype (torch.dtype, optional) – the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both start and end are real, and corresponding complex dtype when either is complex.

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Example:

>>> torch.logspace(start=-10, end=10, steps=5)
tensor([ 1.0000e-10,  1.0000e-05,  1.0000e+00,  1.0000e+05,  1.0000e+10])
>>> torch.logspace(start=0.1, end=1.0, steps=5)
tensor([  1.2589,   2.1135,   3.5481,   5.9566,  10.0000])
>>> torch.logspace(start=0.1, end=1.0, steps=1)
tensor([1.2589])
>>> torch.logspace(start=2, end=2, steps=1, base=2)
tensor([4.0])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources