Note
This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.
Source code for torch.testing._creation
"""
This module contains tensor creation utilities.
"""
import collections.abc
import math
from typing import cast, List, Optional, Tuple, Union
import torch
# Used by make_tensor for generating complex tensor.
complex_to_corresponding_float_type_map = {
torch.complex32: torch.float16,
torch.complex64: torch.float32,
torch.complex128: torch.float64,
}
float_to_corresponding_complex_type_map = {
v: k for k, v in complex_to_corresponding_float_type_map.items()
}
def _uniform_random(t: torch.Tensor, low: float, high: float):
# uniform_ requires to-from <= std::numeric_limits<scalar_t>::max()
# Work around this by scaling the range before and after the PRNG
if high - low >= torch.finfo(t.dtype).max:
return t.uniform_(low / 2, high / 2).mul_(2)
else:
return t.uniform_(low, high)
[docs]def make_tensor(
*shape: Union[int, torch.Size, List[int], Tuple[int, ...]],
dtype: torch.dtype,
device: Union[str, torch.device],
low: Optional[float] = None,
high: Optional[float] = None,
requires_grad: bool = False,
noncontiguous: bool = False,
exclude_zero: bool = False,
memory_format: Optional[torch.memory_format] = None,
) -> torch.Tensor:
r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with
values uniformly drawn from ``[low, high)``.
If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable
finite values then they are clamped to the lowest or highest representable finite value, respectively.
If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`,
which depend on :attr:`dtype`.
+---------------------------+------------+----------+
| ``dtype`` | ``low`` | ``high`` |
+===========================+============+==========+
| boolean type | ``0`` | ``2`` |
+---------------------------+------------+----------+
| unsigned integral type | ``0`` | ``10`` |
+---------------------------+------------+----------+
| signed integral types | ``-9`` | ``10`` |
+---------------------------+------------+----------+
| floating types | ``-9`` | ``9`` |
+---------------------------+------------+----------+
| complex types | ``-9`` | ``9`` |
+---------------------------+------------+----------+
Args:
shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor.
dtype (:class:`torch.dtype`): The data type of the returned tensor.
device (Union[str, torch.device]): The device of the returned tensor.
low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is
clamped to the least representable finite value of the given dtype. When ``None`` (default),
this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is
clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value
is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``.
noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is
ignored if the constructed tensor has fewer than two elements.
exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value
depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating
point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the
:attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number
whose real and imaginary parts are both the smallest positive normal number representable by the complex
type. Default ``False``.
memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Incompatible
with :attr:`noncontiguous`.
Raises:
ValueError: if ``requires_grad=True`` is passed for integral `dtype`
ValueError: If ``low > high``.
ValueError: If either :attr:`low` or :attr:`high` is ``nan``.
TypeError: If :attr:`dtype` isn't supported by this function.
Examples:
>>> # xdoctest: +SKIP
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> from torch.testing import make_tensor
>>> # Creates a float tensor with values in [-1, 1)
>>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1)
>>> # xdoctest: +SKIP
tensor([ 0.1205, 0.2282, -0.6380])
>>> # Creates a bool tensor on CUDA
>>> make_tensor((2, 2), device='cuda', dtype=torch.bool)
tensor([[False, False],
[False, True]], device='cuda:0')
"""
def _modify_low_high(low, high, lowest, highest, default_low, default_high, dtype):
"""
Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high) if required.
"""
def clamp(a, l, h):
return min(max(a, l), h)
low = low if low is not None else default_low
high = high if high is not None else default_high
# Checks for error cases
if low != low or high != high:
raise ValueError("make_tensor: one of low or high was NaN!")
if low > high:
raise ValueError("make_tensor: low must be weakly less than high!")
low = clamp(low, lowest, highest)
high = clamp(high, lowest, highest)
if dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]:
return math.floor(low), math.ceil(high)
return low, high
if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence):
shape = shape[0] # type: ignore[assignment]
shape = cast(Tuple[int, ...], tuple(shape))
_integral_types = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]
_floating_types = [torch.float16, torch.bfloat16, torch.float32, torch.float64]
_complex_types = [torch.complex32, torch.complex64, torch.complex128]
if requires_grad and dtype not in _floating_types and dtype not in _complex_types:
raise ValueError("make_tensor: requires_grad must be False for integral dtype")
if dtype is torch.bool:
result = torch.randint(0, 2, shape, device=device, dtype=dtype) # type: ignore[call-overload]
elif dtype is torch.uint8:
ranges = (torch.iinfo(dtype).min, torch.iinfo(dtype).max)
low, high = cast(
Tuple[int, int],
_modify_low_high(low, high, ranges[0], ranges[1], 0, 10, dtype),
)
result = torch.randint(low, high, shape, device=device, dtype=dtype) # type: ignore[call-overload]
elif dtype in _integral_types:
ranges = (torch.iinfo(dtype).min, torch.iinfo(dtype).max)
low, high = _modify_low_high(low, high, ranges[0], ranges[1], -9, 10, dtype)
result = torch.randint(low, high, shape, device=device, dtype=dtype) # type: ignore[call-overload]
elif dtype in _floating_types:
ranges_floats = (torch.finfo(dtype).min, torch.finfo(dtype).max)
m_low, m_high = _modify_low_high(
low, high, ranges_floats[0], ranges_floats[1], -9, 9, dtype
)
result = torch.empty(shape, device=device, dtype=dtype)
_uniform_random(result, m_low, m_high)
elif dtype in _complex_types:
float_dtype = complex_to_corresponding_float_type_map[dtype]
ranges_floats = (torch.finfo(float_dtype).min, torch.finfo(float_dtype).max)
m_low, m_high = _modify_low_high(
low, high, ranges_floats[0], ranges_floats[1], -9, 9, dtype
)
result = torch.empty(shape, device=device, dtype=dtype)
result_real = torch.view_as_real(result)
_uniform_random(result_real, m_low, m_high)
else:
raise TypeError(
f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()."
" To request support, file an issue at: https://github.com/pytorch/pytorch/issues"
)
assert not (noncontiguous and memory_format is not None)
if noncontiguous and result.numel() > 1:
result = torch.repeat_interleave(result, 2, dim=-1)
result = result[..., ::2]
elif memory_format is not None:
result = result.clone(memory_format=memory_format)
if exclude_zero:
if dtype in _integral_types or dtype is torch.bool:
replace_with = torch.tensor(1, device=device, dtype=dtype)
elif dtype in _floating_types:
replace_with = torch.tensor(
torch.finfo(dtype).tiny, device=device, dtype=dtype
)
else: # dtype in _complex_types:
float_dtype = complex_to_corresponding_float_type_map[dtype]
float_eps = torch.tensor(
torch.finfo(float_dtype).tiny, device=device, dtype=float_dtype
)
replace_with = torch.complex(float_eps, float_eps)
result[result == 0] = replace_with
if dtype in _floating_types + _complex_types:
result.requires_grad = requires_grad
return result