Shortcuts

class torch.nn.ReplicationPad2d(padding)[source]

Pads the input tensor using replication of the input boundary.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses ($\text{padding\_left}$, $\text{padding\_right}$, $\text{padding\_top}$, $\text{padding\_bottom}$)

Shape:
• Input: $(N, C, H_{in}, W_{in})$ or $(C, H_{in}, W_{in})$.

• Output: $(N, C, H_{out}, W_{out})$ or $(C, H_{out}, W_{out})$, where

$H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}$

$W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}$

Examples:

>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]]]])
>>> m(input)
tensor([[[[0., 0., 0., 1., 2., 2., 2.],
[0., 0., 0., 1., 2., 2., 2.],
[0., 0., 0., 1., 2., 2., 2.],
[3., 3., 3., 4., 5., 5., 5.],
[6., 6., 6., 7., 8., 8., 8.],
[6., 6., 6., 7., 8., 8., 8.],
[6., 6., 6., 7., 8., 8., 8.]]]])
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[0., 0., 1., 2., 2.],
[0., 0., 1., 2., 2.],
[0., 0., 1., 2., 2.],
[3., 3., 4., 5., 5.],
[6., 6., 7., 8., 8.]]]])


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials