[docs]classPSNR(Metric):r"""Computes average `Peak signal-to-noise ratio (PSNR) <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio>`_. .. math:: \text{PSNR}(I, J) = 10 * \log_{10}\left(\frac{ MAX_{I}^2 }{ \text{ MSE } }\right) where :math:`\text{MSE}` is `mean squared error <https://en.wikipedia.org/wiki/Mean_squared_error>`_. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` and `y` **must** have (batch_size, ...) shape. - `y_pred` and `y` **must** have same dtype and same shape. Args: data_range: The data range of the target image (distance between minimum and maximum possible values). For other data types, please set the data range, otherwise an exception will be raised. output_transform: A callable that is used to transform the Engine’s process_function’s output into the form expected by the metric. device: specifies which device updates are accumulated on. Setting the metric’s device to be the same as your update arguments ensures the update method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: psnr = PSNR(data_range=1.0) psnr.attach(default_evaluator, 'psnr') preds = torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['psnr']) .. testoutput:: 16.8671405... This metric by default accepts Grayscale or RGB images. But if you have YCbCr or YUV images, only Y channel is needed for computing PSNR. And, this can be done with ``output_transform``. For instance, .. testcode:: def get_y_channel(output): y_pred, y = output # y_pred and y are (B, 3, H, W) and YCbCr or YUV images # let's select y channel return y_pred[:, 0, ...], y[:, 0, ...] psnr = PSNR(data_range=219, output_transform=get_y_channel) psnr.attach(default_evaluator, 'psnr') preds = 219 * torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['psnr']) .. testoutput:: 16.7027966... .. versionadded:: 0.4.3 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """_state_dict_all_req_keys=("_sum_of_batchwise_psnr","_num_examples")def__init__(self,data_range:Union[int,float],output_transform:Callable=lambdax:x,device:Union[str,torch.device]=torch.device("cpu"),skip_unrolling:bool=False,):super().__init__(output_transform=output_transform,device=device,skip_unrolling=skip_unrolling)self.data_range=data_rangedef_check_shape_dtype(self,output:Sequence[torch.Tensor])->None:y_pred,y=outputify_pred.dtype!=y.dtype:raiseTypeError(f"Expected y_pred and y to have the same data type. Got y_pred: {y_pred.dtype} and y: {y.dtype}.")ify_pred.shape!=y.shape:raiseValueError(f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}.")
[docs]@sync_all_reduce("_sum_of_batchwise_psnr","_num_examples")defcompute(self)->float:ifself._num_examples==0:raiseNotComputableError("PSNR must have at least one example before it can be computed.")return(self._sum_of_batchwise_psnr/self._num_examples).item()