PSNR#
- class ignite.metrics.PSNR(data_range, output_transform=<function PSNR.<lambda>>, device=device(type='cpu'))[source]#
Computes average Peak signal-to-noise ratio (PSNR).
where is mean squared error.
update
must receive output of the form(y_pred, y)
.y_pred and y must have (batch_size, …) shape.
y_pred and y must have same dtype and same shape.
- Parameters
data_range (Union[int, float]) – The data range of the target image (distance between minimum and maximum possible values). For other data types, please set the data range, otherwise an exception will be raised.
output_transform (Callable) – A callable that is used to transform the Engine’s process_function’s output into the form expected by the metric.
device (Union[str, device]) – specifies which device updates are accumulated on. Setting the metric’s device to be the same as your update arguments ensures the update method is non-blocking. By default, CPU.
Examples
To use with
Engine
andprocess_function
, simply attach the metric instance to the engine. The output of the engine’sprocess_function
needs to be in format of(y_pred, y)
or{'y_pred': y_pred, 'y': y, ...}
. If not,output_tranform
can be added to the metric to transform the output into the form expected by the metric.For more information on how metric works with
Engine
, visit Attach Engine API.from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
psnr = PSNR(data_range=1.0) psnr.attach(default_evaluator, 'psnr') preds = torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['psnr'])
16.8671405...
This metric by default accepts Grayscale or RGB images. But if you have YCbCr or YUV images, only Y channel is needed for computing PSNR. And, this can be done with
output_transform
. For instance,def get_y_channel(output): y_pred, y = output # y_pred and y are (B, 3, H, W) and YCbCr or YUV images # let's select y channel return y_pred[:, 0, ...], y[:, 0, ...] psnr = PSNR(data_range=219, output_transform=get_y_channel) psnr.attach(default_evaluator, 'psnr') preds = 219 * torch.rand([4, 3, 16, 16]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['psnr'])
16.7027966...
New in version 0.4.3.
Methods
Computes the metric based on its accumulated state.
Resets the metric to its initial state.
Updates the metric's state using the passed batch output.
- compute()[source]#
Computes the metric based on its accumulated state.
By default, this is called at the end of each epoch.
- Returns
- the actual quantity of interest. However, if a
Mapping
is returned, it will be (shallow) flattened into engine.state.metrics whencompleted()
is called. - Return type
Any
- Raises
NotComputableError – raised when the metric cannot be computed.