LambdaStateScheduler#
- class ignite.handlers.state_param_scheduler.LambdaStateScheduler(lambda_obj, param_name, save_history=False, create_new=False)[source]#
- Update a parameter during training by using a user defined callable object.
User defined callable object is taking an event index as input and returns parameter value.
- Parameters
lambda_obj (Any) – user defined callable object.
param_name (str) – name of parameter to update.
save_history (bool) – whether to log the parameter values to engine.state.param_history, (default=False).
create_new (bool) – whether to create
param_name
onengine.state
taking into account whetherparam_name
attribute already exists or not. Overrides existing attribute by default, (default=False).
Examples
from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
default_trainer = get_default_trainer() class LambdaState: def __init__(self, initial_value, gamma): self.initial_value = initial_value self.gamma = gamma def __call__(self, event_index): return self.initial_value * self.gamma ** (event_index % 9) param_scheduler = LambdaStateScheduler( param_name="param", lambda_obj=LambdaState(1, 0.9), create_new=True ) # parameter is param, initial_value sets param to 1 and in this example gamma = 1 # using class 'LambdaState' user defined callable object can be created # update a parameter during training by using a user defined callable object # user defined callable object is taking an event index as input and returns parameter value # in this example, we update as initial_value * gamma ** (event_endex % 9) # in every Epoch the parameter is updated as 1 * 0.9 ** (Epoch % 9) # In Epoch 3, parameter param = 1 * 0.9 ** (3 % 9) = 0.729 # In Epoch 10, parameter param = 1 * 0.9 ** (10 % 9) = 0.9 param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED) @default_trainer.on(Events.EPOCH_COMPLETED) def print_param(): print(default_trainer.state.param) default_trainer.run([0], max_epochs=10)
0.9 0.81 0.7290... 0.6561 0.5904... 0.5314... 0.4782... 0.4304... 1.0 0.9
New in version 0.4.7.
Methods
Method to get current parameter values