ROC_AUC#
- class ignite.contrib.metrics.ROC_AUC(output_transform=<function ROC_AUC.<lambda>>, check_compute_fn=False, device=device(type='cpu'))[source]#
Computes Area Under the Receiver Operating Characteristic Curve (ROC AUC) accumulating predictions and the ground-truth during an epoch and applying sklearn.metrics.roc_auc_score .
- Parameters
output_transform (Callable) – a callable that is used to transform the
Engine
’sprocess_function
’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs.check_compute_fn (bool) – Default False. If True, roc_curve is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function.
device (Union[str, device]) – optional device specification for internal storage.
Note
ROC_AUC expects y to be comprised of 0’s and 1’s. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below:
def sigmoid_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y avg_precision = ROC_AUC(sigmoid_output_transform)
Examples
from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.utils import * from ignite.contrib.metrics.regression import * from ignite.contrib.metrics import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
roc_auc = ROC_AUC() #The ``output_transform`` arg of the metric can be used to perform a sigmoid on the ``y_pred``. roc_auc.attach(default_evaluator, 'roc_auc') y_pred = torch.tensor([[0.0474], [0.5987], [0.7109], [0.9997]]) y_true = torch.tensor([[0], [0], [1], [0]]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['roc_auc'])
0.6666...
Methods