Shortcuts

Source code for ignite.metrics.running_average

from typing import Callable, cast, Optional, Sequence, Union

import torch

import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.metrics.metric import EpochWise, Metric, MetricUsage, reinit__is_reduced, sync_all_reduce

__all__ = ["RunningAverage"]


[docs]class RunningAverage(Metric): """Compute running average of a metric or the output of process function. Args: src: input source: an instance of :class:`~ignite.metrics.metric.Metric` or None. The latter corresponds to `engine.state.output` which holds the output of process function. alpha: running average decay factor, default 0.98 output_transform: a function to use to transform the output if `src` is None and corresponds the output of process function. Otherwise it should be None. epoch_bound: whether the running average should be reset after each epoch (defaults to True). device: specifies which device updates are accumulated on. Should be None when ``src`` is an instance of :class:`~ignite.metrics.metric.Metric`, as the running average will use the ``src``'s device. Otherwise, defaults to CPU. Only applicable when the computed value from the metric is a tensor. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: 1 default_trainer = get_default_trainer() accuracy = Accuracy() metric = RunningAverage(accuracy) metric.attach(default_trainer, 'running_avg_accuracy') @default_trainer.on(Events.ITERATION_COMPLETED) def log_running_avg_metrics(): print(default_trainer.state.metrics['running_avg_accuracy']) y_true = [torch.tensor(y) for y in [[0], [1], [0], [1], [0], [1]]] y_pred = [torch.tensor(y) for y in [[0], [0], [0], [1], [1], [1]]] state = default_trainer.run(zip(y_pred, y_true)) .. testoutput:: 1 1.0 0.98 0.98039... 0.98079... 0.96117... 0.96195... .. testcode:: 2 default_trainer = get_default_trainer() metric = RunningAverage(output_transform=lambda x: x.item()) metric.attach(default_trainer, 'running_avg_accuracy') @default_trainer.on(Events.ITERATION_COMPLETED) def log_running_avg_metrics(): print(default_trainer.state.metrics['running_avg_accuracy']) y = [torch.tensor(y) for y in [[0], [1], [0], [1], [0], [1]]] state = default_trainer.run(y) .. testoutput:: 2 0.0 0.020000... 0.019600... 0.039208... 0.038423... 0.057655... """ required_output_keys = None def __init__( self, src: Optional[Metric] = None, alpha: float = 0.98, output_transform: Optional[Callable] = None, epoch_bound: bool = True, device: Optional[Union[str, torch.device]] = None, ): if not (isinstance(src, Metric) or src is None): raise TypeError("Argument src should be a Metric or None.") if not (0.0 < alpha <= 1.0): raise ValueError("Argument alpha should be a float between 0.0 and 1.0.") if isinstance(src, Metric): if output_transform is not None: raise ValueError("Argument output_transform should be None if src is a Metric.") if device is not None: raise ValueError("Argument device should be None if src is a Metric.") self.src = src self._get_src_value = self._get_metric_value setattr(self, "iteration_completed", self._metric_iteration_completed) device = src._device else: if output_transform is None: raise ValueError( "Argument output_transform should not be None if src corresponds " "to the output of process function." ) self._get_src_value = self._get_output_value setattr(self, "update", self._output_update) if device is None: device = torch.device("cpu") self.alpha = alpha self.epoch_bound = epoch_bound super(RunningAverage, self).__init__(output_transform=output_transform, device=device) # type: ignore[arg-type]
[docs] @reinit__is_reduced def reset(self) -> None: self._value = None # type: Optional[Union[float, torch.Tensor]]
[docs] @reinit__is_reduced def update(self, output: Sequence) -> None: # Implement abstract method pass
[docs] def compute(self) -> Union[torch.Tensor, float]: if self._value is None: self._value = self._get_src_value() else: self._value = self._value * self.alpha + (1.0 - self.alpha) * self._get_src_value() return self._value
[docs] def attach(self, engine: Engine, name: str, _usage: Union[str, MetricUsage] = EpochWise()) -> None: if self.epoch_bound: # restart average every epoch engine.add_event_handler(Events.EPOCH_STARTED, self.started) # compute metric engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed) # apply running average engine.add_event_handler(Events.ITERATION_COMPLETED, self.completed, name)
def _get_metric_value(self) -> Union[torch.Tensor, float]: return self.src.compute() @sync_all_reduce("src") def _get_output_value(self) -> Union[torch.Tensor, float]: # we need to compute average instead of sum produced by @sync_all_reduce("src") output = cast(Union[torch.Tensor, float], self.src) / idist.get_world_size() return output def _metric_iteration_completed(self, engine: Engine) -> None: self.src.started(engine) self.src.iteration_completed(engine) @reinit__is_reduced def _output_update(self, output: Union[torch.Tensor, float]) -> None: if isinstance(output, torch.Tensor): output = output.detach().to(self._device, copy=True) self.src = output # type: ignore[assignment]

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 11/07/2024, 2:17:04 PM.

Built with Sphinx using a theme provided by Read the Docs.