# coding: utf-8
import contextlib
import logging
import tempfile
import warnings
from math import ceil
from pathlib import Path
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint
from ignite.handlers.param_scheduler import LRScheduler, PiecewiseLinear
[docs]class FastaiLRFinder:
"""Learning rate finder handler for supervised trainers.
While attached, the handler increases the learning rate in between two
boundaries in a linear or exponential manner. It provides valuable
information on how well the network can be trained over a range of learning
rates and what can be an optimal learning rate.
Examples:
.. code-block:: python
from ignite.handlers import FastaiLRFinder
trainer = ...
model = ...
optimizer = ...
lr_finder = FastaiLRFinder()
to_save = {"model": model, "optimizer": optimizer}
with lr_finder.attach(trainer, to_save=to_save) as trainer_with_lr_finder:
trainer_with_lr_finder.run(dataloader)
# Get lr_finder results
lr_finder.get_results()
# Plot lr_finder results (requires matplotlib)
lr_finder.plot()
# get lr_finder suggestion for lr
lr_finder.lr_suggestion()
Note:
When context manager is exited all LR finder's handlers are removed.
Note:
Please, also keep in mind that all other handlers attached the trainer will be executed during LR finder's run.
Note:
This class may require `matplotlib` package to be installed to plot learning rate range test:
.. code-block:: bash
pip install matplotlib
References:
Cyclical Learning Rates for Training Neural Networks:
https://arxiv.org/abs/1506.01186
fastai/lr_find: https://github.com/fastai/fastai
.. versionadded:: 0.4.6
"""
def __init__(self) -> None:
self._diverge_flag = False
self._history = {} # type: Dict[str, List[Any]]
self._best_loss = None
self._lr_schedule = None # type: Optional[Union[LRScheduler, PiecewiseLinear]]
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
def _run(
self,
trainer: Engine,
optimizer: Optimizer,
output_transform: Callable,
num_iter: int,
start_lr: float,
end_lr: float,
step_mode: str,
smooth_f: float,
diverge_th: float,
) -> None:
self._history = {"lr": [], "loss": []}
self._best_loss = None
self._diverge_flag = False
# attach LRScheduler to trainer.
if num_iter is None:
num_iter = trainer.state.epoch_length * trainer.state.max_epochs
else:
max_iter = trainer.state.epoch_length * trainer.state.max_epochs # type: ignore[operator]
if max_iter < num_iter:
max_iter = num_iter
trainer.state.max_epochs = ceil(num_iter / trainer.state.epoch_length) # type: ignore[operator]
if not trainer.has_event_handler(self._reached_num_iterations):
trainer.add_event_handler(Events.ITERATION_COMPLETED, self._reached_num_iterations, num_iter)
# attach loss and lr logging
if not trainer.has_event_handler(self._log_lr_and_loss):
trainer.add_event_handler(
Events.ITERATION_COMPLETED, self._log_lr_and_loss, output_transform, smooth_f, diverge_th
)
self.logger.debug(f"Running LR finder for {num_iter} iterations")
if start_lr is None:
start_lr = optimizer.param_groups[0]["lr"]
# Initialize the proper learning rate policy
if step_mode.lower() == "exp":
start_lr = [start_lr] * len(optimizer.param_groups) # type: ignore
self._lr_schedule = LRScheduler(_ExponentialLR(optimizer, start_lr, end_lr, num_iter))
else:
self._lr_schedule = PiecewiseLinear(
optimizer, param_name="lr", milestones_values=[(0, start_lr), (num_iter, end_lr)]
)
if not trainer.has_event_handler(self._lr_schedule):
trainer.add_event_handler(Events.ITERATION_COMPLETED, self._lr_schedule, num_iter)
def _reset(self, trainer: Engine) -> None:
self.logger.debug("Completed LR finder run")
trainer.remove_event_handler(self._lr_schedule, Events.ITERATION_COMPLETED) # type: ignore[arg-type]
trainer.remove_event_handler(self._log_lr_and_loss, Events.ITERATION_COMPLETED)
trainer.remove_event_handler(self._reached_num_iterations, Events.ITERATION_COMPLETED)
def _log_lr_and_loss(self, trainer: Engine, output_transform: Callable, smooth_f: float, diverge_th: float) -> None:
output = trainer.state.output
loss = output_transform(output)
if not isinstance(loss, float):
if isinstance(loss, torch.Tensor):
if (loss.ndimension() == 0) or (loss.ndimension() == 1 and len(loss) == 1):
loss = loss.item()
else:
raise ValueError(
"if output of the engine is torch.Tensor, then "
"it must be 0d torch.Tensor or 1d torch.Tensor with 1 element, "
f"but got torch.Tensor of shape {loss.shape}"
)
else:
raise TypeError(
"output of the engine should be of type float or 0d torch.Tensor "
"or 1d torch.Tensor with 1 element, "
f"but got output of type {type(loss).__name__}"
)
loss = idist.all_reduce(loss)
lr = self._lr_schedule.get_param() # type: ignore[union-attr]
self._history["lr"].append(lr)
if trainer.state.iteration == 1:
self._best_loss = loss
else:
if smooth_f > 0:
loss = smooth_f * loss + (1 - smooth_f) * self._history["loss"][-1]
if loss < self._best_loss:
self._best_loss = loss
self._history["loss"].append(loss)
# Check if the loss has diverged; if it has, stop the trainer
if self._history["loss"][-1] > diverge_th * self._best_loss: # type: ignore[operator]
self._diverge_flag = True
self.logger.info("Stopping early, the loss has diverged")
trainer.terminate()
def _reached_num_iterations(self, trainer: Engine, num_iter: int) -> None:
if trainer.state.iteration > num_iter:
trainer.terminate()
def _warning(self, _: Any) -> None:
if not self._diverge_flag:
warnings.warn(
"Run completed without loss diverging, increase end_lr, decrease diverge_th or look"
" at lr_finder.plot()",
UserWarning,
)
def _detach(self, trainer: Engine) -> None:
"""
Detaches lr_finder from trainer.
Args:
trainer: the trainer to detach form.
"""
if trainer.has_event_handler(self._run, Events.STARTED):
trainer.remove_event_handler(self._run, Events.STARTED)
if trainer.has_event_handler(self._warning, Events.COMPLETED):
trainer.remove_event_handler(self._warning, Events.COMPLETED)
if trainer.has_event_handler(self._reset, Events.COMPLETED):
trainer.remove_event_handler(self._reset, Events.COMPLETED)
[docs] def get_results(self) -> Dict[str, List[Any]]:
"""
Returns:
Dictionary with loss and lr logs from the previous run
"""
return self._history
[docs] def plot(
self,
skip_start: int = 10,
skip_end: int = 5,
log_lr: bool = True,
display_suggestion: bool = True,
ax: Optional[Any] = None,
**kwargs: Any,
) -> None:
"""Plots the learning rate range test.
This method requires ``matplotlib`` package to be installed:
.. code-block:: bash
pip install matplotlib
Args:
skip_start: number of batches to trim from the start.
Default: 10.
skip_end: number of batches to trim from the start.
Default: 5.
log_lr: True to plot the learning rate in a logarithmic
scale; otherwise, plotted in a linear scale. Default: True.
display_suggestion: if True, red dot shows the suggested learning rate.
ax: Pre-existing axes for the plot. Default: None.
kwargs: optional kwargs passed to ``plt.subplots`` if ``ax`` is not provided.
.. code-block:: python
ax = lr_finder.plot(skip_end=0)
ax.figure.savefig("output.jpg")
"""
try:
from matplotlib import pyplot as plt
except ImportError:
raise RuntimeError(
"This method requires matplotlib to be installed. "
"Please install it with command: \n pip install matplotlib"
)
if not self._history:
raise RuntimeError("learning rate finder didn't run yet so results can't be plotted")
if skip_start < 0:
raise ValueError("skip_start cannot be negative")
if skip_end < 0:
raise ValueError("skip_end cannot be negative")
# Get the data to plot from the history dictionary.
lrs = self._history["lr"]
losses = self._history["loss"]
num_groups = len(lrs[0]) if isinstance(lrs[0], list) else 1
legends = [f"suggested lr for param_groups {i}" for i in range(num_groups)]
if ax is None:
fig, ax = plt.subplots(**kwargs)
# Check to show the suggested learning rate
if display_suggestion:
sug_lr = self.lr_suggestion()
idx = self._history["lr"].index(sug_lr)
if skip_start >= idx:
warnings.warn(
"skip_start is larger than the suggested LR found"
" and it will not be visible on the plot. Please, make the value smaller.",
UserWarning,
)
corresponding_loss = self._history["loss"][int(idx)]
# Check if optimizer has multiple param_groups
if not isinstance(sug_lr, list):
sug_lr = [
sug_lr,
]
for lr in sug_lr:
ax.scatter(
lr, corresponding_loss, color="red" if len(sug_lr) == 1 else None, s=75, marker="o", zorder=3
)
# handle skip_end=0 properly
if skip_end == 0:
lrs = lrs[skip_start:]
losses = losses[skip_start:]
else:
lrs = lrs[skip_start:-skip_end]
losses = losses[skip_start:-skip_end]
plt.legend(legends)
# Plot loss as a function of the learning rate
ax.plot(lrs, losses)
if log_lr:
ax.set_xscale("log")
lr_min = min(lrs[0]) if isinstance(lrs[0], list) else lrs[0]
lr_max = max(lrs[-1]) if isinstance(lrs[-1], list) else lrs[-1]
ax.set_xlim([lr_min, lr_max])
ax.set_xlabel("Learning rate")
ax.set_ylabel("Loss")
plt.show()
return ax
[docs] def lr_suggestion(self) -> Any:
"""
Returns:
Learning rate at the minimum numerical gradient
(ignoring the increasing part of the curve)
"""
if not self._history:
raise RuntimeError("learning rate finder didn't run yet so lr_suggestion can't be returned")
loss = self._history["loss"]
min_loss_idx = torch.tensor(loss).argmin()
# Ignore the increasing part of the curve
decreasing_losses = self._history["loss"][: int(min_loss_idx.item()) + 1]
if len(decreasing_losses) < 3:
raise RuntimeError(
"FastaiLRFinder got unexpected curve shape, the curve should be somehow U-shaped, "
"please decrease start_lr or increase end_lr to resolve this issue."
)
losses = torch.tensor(decreasing_losses)
grads = torch.tensor([0.5 * (losses[i + 1] - losses[i - 1]) for i in range(1, len(losses) - 1)])
min_grad_idx = grads.argmin() + 1
return self._history["lr"][int(min_grad_idx)]
[docs] def apply_suggested_lr(self, optimizer: Optimizer) -> None:
"""
Applying the suggested learning rate(s) on the given optimizer.
Args:
optimizer: the optimizer to apply the suggested learning rate(s) on.
Note:
The given optimizer must be the same as the one we before found the suggested learning rate for.
"""
sug_lr = self.lr_suggestion()
if not isinstance(sug_lr, list):
sug_lr = [
sug_lr,
]
if len(sug_lr) != len(optimizer.param_groups):
raise RuntimeError(
"The number of parameter groups does not match between "
"given optimizer and the one used for estimating the "
f"learning rate: {len(sug_lr)} vs {len(optimizer.param_groups)}"
)
for i, lr in enumerate(sug_lr):
optimizer.param_groups[i]["lr"] = lr
[docs] @contextlib.contextmanager
def attach(
self,
trainer: Engine,
to_save: Mapping,
output_transform: Callable = lambda output: output,
num_iter: Optional[int] = None,
start_lr: Optional[float] = None,
end_lr: float = 10.0,
step_mode: str = "exp",
smooth_f: float = 0.05,
diverge_th: float = 5.0,
) -> Any:
"""Attaches lr_finder to a given trainer. It also resets model and optimizer at the end of the run.
Args:
trainer: lr_finder is attached to this trainer. Please, keep in mind that all attached handlers
will be executed.
to_save: dictionary with optimizer and other objects that needs to be restored after running
the LR finder. For example, ``to_save={'optimizer': optimizer, 'model': model}``.
It should contain "optimizer" key for the optimizer.
Also all objects should implement ``state_dict`` and ``load_state_dict`` methods.
output_transform: function that transforms the trainer's ``state.output`` after each
iteration. It must return the loss of that iteration.
num_iter: number of iterations for lr schedule between base lr and end_lr. Default, it will
run for ``trainer.state.epoch_length * trainer.state.max_epochs``.
start_lr: lower bound for lr search. Default, Learning Rate specified with the optimizer.
end_lr: upper bound for lr search. Default, 10.0.
step_mode: "exp" or "linear", which way should the lr be increased from ``start_lr``
to ``end_lr``. Default, "exp".
smooth_f: loss smoothing factor in range ``[0, 1)``. Default, 0.05
diverge_th: Used for stopping the search when ``current loss > diverge_th * best_loss``.
Default, 5.0.
Returns:
trainer_with_lr_finder (trainer used for finding the lr)
Examples:
.. code-block:: python
to_save = {"model": model, "optimizer": optimizer}
with lr_finder.attach(trainer, to_save=to_save) as trainer_with_lr_finder:
trainer_with_lr_finder.run(dataloader)
Note:
lr_finder cannot be attached to more than one trainer at a time.
"""
if not isinstance(to_save, Mapping):
raise TypeError(f"Argument to_save should be a mapping, but given {type(to_save)}")
Checkpoint._check_objects(to_save, "state_dict")
Checkpoint._check_objects(to_save, "load_state_dict")
if "optimizer" not in to_save:
raise ValueError("Mapping to_save should contain 'optimizer' key")
if not isinstance(to_save["optimizer"], torch.optim.Optimizer):
raise TypeError(
f"Object to_save['optimizer'] should be torch optimizer, but given {type(to_save['optimizer'])}"
)
if smooth_f < 0 or smooth_f >= 1:
raise ValueError("smooth_f is outside the range [0, 1]")
if diverge_th < 1:
raise ValueError("diverge_th should be larger than 1")
if step_mode not in ["exp", "linear"]:
raise ValueError(f"step_mode should be 'exp' or 'linear', but given {step_mode}")
if num_iter is not None:
if not isinstance(num_iter, int):
raise TypeError(f"if provided, num_iter should be an integer, but give {num_iter}")
if num_iter <= 0:
raise ValueError(f"if provided, num_iter should be positive, but give {num_iter}")
if isinstance(start_lr, (float, int)) and start_lr >= end_lr:
raise ValueError(f"start_lr must be less than end_lr, start_lr={start_lr} vs end_lr={end_lr}")
# store to_save
with tempfile.TemporaryDirectory() as tmpdirname:
obj = {k: o.state_dict() for k, o in to_save.items()}
# add trainer
obj["trainer"] = trainer.state_dict()
cache_filepath = Path(tmpdirname) / "ignite_lr_finder_cache.pt"
torch.save(obj, cache_filepath.as_posix())
optimizer = to_save["optimizer"]
# Attach handlers
if not trainer.has_event_handler(self._run):
trainer.add_event_handler(
Events.STARTED,
self._run,
optimizer,
output_transform,
num_iter,
start_lr,
end_lr,
step_mode,
smooth_f,
diverge_th,
)
if not trainer.has_event_handler(self._warning):
trainer.add_event_handler(Events.COMPLETED, self._warning)
if not trainer.has_event_handler(self._reset):
trainer.add_event_handler(Events.COMPLETED, self._reset)
yield trainer
self._detach(trainer)
# restore to_save and reset trainer's state
obj = torch.load(cache_filepath.as_posix())
trainer.load_state_dict(obj["trainer"])
for k, o in obj.items():
if k in to_save:
to_save[k].load_state_dict(o)
class _ExponentialLR(_LRScheduler):
"""Exponentially increases the learning rate between two boundaries over a number of
iterations.
Args:
optimizer: wrapped optimizer.
end_lr: the initial learning rate which is the lower
boundary of the test. Default: 10.
num_iter: the number of iterations over which the test
occurs. Default: 100.
last_epoch: the index of last epoch. Default: -1.
"""
def __init__(self, optimizer: Optimizer, start_lr: float, end_lr: float, num_iter: int, last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super(_ExponentialLR, self).__init__(optimizer, last_epoch)
# override base_lrs
self.base_lrs = start_lr
def get_lr(self) -> List[float]: # type: ignore
curr_iter = self.last_epoch + 1 # type: ignore[attr-defined]
r = curr_iter / self.num_iter
return [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs] # type: ignore[attr-defined]