"""Neptune logger and its helper handlers."""
import tempfile
from typing import Any, Callable, List, Mapping, Optional, Union
import torch
from torch.optim import Optimizer
import ignite.distributed as idist
from ignite.contrib.handlers.base_logger import (
BaseLogger,
BaseOptimizerParamsHandler,
BaseOutputHandler,
BaseWeightsScalarHandler,
)
from ignite.engine import Engine, Events
from ignite.handlers import global_step_from_engine
from ignite.handlers.checkpoint import BaseSaveHandler
__all__ = [
"NeptuneLogger",
"NeptuneSaver",
"OptimizerParamsHandler",
"OutputHandler",
"WeightsScalarHandler",
"GradsScalarHandler",
"global_step_from_engine",
]
[docs]class NeptuneLogger(BaseLogger):
"""
`Neptune <https://neptune.ai/>`_ handler to log metrics, model/optimizer parameters, gradients during the training
and validation. It can also log model checkpoints to Neptune server.
.. code-block:: bash
pip install neptune-client
Args:
api_token: Required in online mode. Neptune API token, found on https://neptune.ai.
project_name: Required in online mode. Qualified name of a project in a form of
"namespace/project_name" for example "tom/minst-classification".
If None, the value of NEPTUNE_PROJECT environment variable will be taken.
You need to create the project in https://neptune.ai first.
offline_mode: Optional default False. If offline_mode=True no logs will be send to neptune.
Usually used for debug purposes.
experiment_name: Optional. Editable name of the experiment.
Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.
upload_source_files: Optional. List of source files to be uploaded.
Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab.
If None is passed, Python file from which experiment was created will be uploaded.
Pass empty list (`[]`) to upload no files. Unix style pathname pattern expansion is supported.
For example, you can pass `*.py` to upload all python source files from the current directory.
For recursion lookup use `**/*.py` (for Python 3.5 and later). For more information see glob library.
params: Optional. Parameters of the experiment. After experiment creation params are read-only.
Parameters are displayed in the experiment’s Parameters section and each key-value pair can be
viewed in experiments view as a column.
properties: Optional default is `{}`. Properties of the experiment.
They are editable after experiment is created. Properties are displayed in the experiment’s Details and
each key-value pair can be viewed in experiments view as a column.
tags: Optional default `[]`. Must be list of str. Tags of the experiment.
Tags are displayed in the experiment’s Details and can be viewed in experiments view as a column.
Examples:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# Create a logger
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Attach the logger to the trainer to log training loss at each iteration
npt_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {'loss': loss}
)
# Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
# We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer` instead of `train_evaluator`.
npt_logger.attach_output_handler(
train_evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="training",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer),
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
# `trainer` instead of `evaluator`.
npt_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)),
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
npt_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer,
param_name='lr' # optional
)
# Attach the logger to the trainer to log model's weights norm after each iteration
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model)
)
Explore an experiment with neptune tracking here:
https://ui.neptune.ai/o/shared/org/pytorch-ignite-integration/e/PYTOR1-18/charts
You can save model checkpoints to a Neptune server:
.. code-block:: python
from ignite.handlers import Checkpoint
def score_function(engine):
return engine.state.metrics["accuracy"]
to_save = {"model": model}
handler = Checkpoint(
to_save,
NeptuneSaver(npt_logger), n_saved=2,
filename_prefix="best",
score_function=score_function,
score_name="validation_accuracy",
global_step_transform=global_step_from_engine(trainer)
)
validation_evaluator.add_event_handler(Events.COMPLETED, handler)
It is also possible to use the logger as context manager:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# We are using the api_token for the anonymous user neptuner but you can use your own.
with NeptuneLogger(api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","mnist"] # Optional
) as npt_logger:
trainer = Engine(update_fn)
# Attach the logger to the trainer to log training loss at each iteration
npt_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {"loss": loss}
)
"""
def __getattr__(self, attr: Any) -> Any:
import neptune
return getattr(neptune, attr)
def __init__(self, *args: Any, **kwargs: Any) -> None:
try:
import neptune
except ImportError:
raise RuntimeError(
"This contrib module requires neptune-client to be installed. "
"You may install neptune with command: \n pip install neptune-client \n"
)
if kwargs.get("offline_mode", False):
self.mode = "offline"
neptune.init(project_qualified_name="dry-run/project", backend=neptune.OfflineBackend())
else:
self.mode = "online"
neptune.init(api_token=kwargs.get("api_token"), project_qualified_name=kwargs.get("project_name"))
kwargs["name"] = kwargs.pop("experiment_name", None)
self._experiment_kwargs = {
k: v for k, v in kwargs.items() if k not in ["api_token", "project_name", "offline_mode"]
}
self.experiment = neptune.create_experiment(**self._experiment_kwargs)
def close(self) -> None:
self.stop()
def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler":
return OutputHandler(*args, **kwargs)
def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler":
return OptimizerParamsHandler(*args, **kwargs)
[docs]class OutputHandler(BaseOutputHandler):
"""Helper handler to log engine's output and/or metrics
Args:
tag: common title for all produced plots. For example, "training"
metric_names: list of metric names to plot or a string "all" to plot all available
metrics.
output_transform: output transform function to prepare `engine.state.output` as a number.
For example, `output_transform = lambda output: output`
This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
with corresponding keys.
global_step_transform: global step transform function to output a desired global step.
Input of the function is `(engine, event_name)`. Output of function should be an integer.
Default is None, global_step based on attached engine. If provided,
uses function output as global_step. To setup global step from another engine, please use
:meth:`~ignite.contrib.handlers.neptune_logger.global_step_from_engine`.
state_attributes: list of attributes of the ``trainer.state`` to plot.
Examples:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# Create a logger
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer`:
npt_logger.attach(
evaluator,
log_handler=OutputHandler(
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
),
event_name=Events.EPOCH_COMPLETED
)
# or equivalently
npt_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
)
Another example, where model is evaluated every 500 iterations:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
@trainer.on(Events.ITERATION_COMPLETED(every=500))
def evaluate(engine):
evaluator.run(validation_set, max_epochs=1)
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite", "minst"] # Optional
)
def global_step_transform(*args, **kwargs):
return trainer.state.iteration
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# every 500 iterations. Since evaluator engine does not have access to the training iteration, we
# provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
# evaluator metrics are plotted on NeptuneML.
npt_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metrics=["nll", "accuracy"],
global_step_transform=global_step_transform
)
Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta``
are also logged along with the NLL and Accuracy after each iteration:
.. code-block:: python
npt_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
metrics=["nll", "accuracy"],
state_attributes=["alpha", "beta"],
)
Example of `global_step_transform`:
.. code-block:: python
def global_step_transform(engine, event_name):
return engine.state.get_event_attrib_value(event_name)
.. versionchanged:: 0.4.7
accepts an optional list of `state_attributes`
"""
def __init__(
self,
tag: str,
metric_names: Optional[Union[str, List[str]]] = None,
output_transform: Optional[Callable] = None,
global_step_transform: Optional[Callable] = None,
state_attributes: Optional[List[str]] = None,
):
super(OutputHandler, self).__init__(
tag, metric_names, output_transform, global_step_transform, state_attributes
)
def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, NeptuneLogger):
raise TypeError("Handler OutputHandler works only with NeptuneLogger")
metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False)
global_step = self.global_step_transform(engine, event_name) # type: ignore[misc]
if not isinstance(global_step, int):
raise TypeError(
f"global_step must be int, got {type(global_step)}."
" Please check the output of global_step_transform."
)
for key, value in metrics.items():
logger.log_metric(key, x=global_step, y=value)
[docs]class OptimizerParamsHandler(BaseOptimizerParamsHandler):
"""Helper handler to log optimizer parameters
Args:
optimizer: torch optimizer or any object with attribute ``param_groups``
as a sequence.
param_name: parameter name
tag: common title for all produced plots. For example, "generator"
Examples:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# Create a logger
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
npt_logger.attach(
trainer,
log_handler=OptimizerParamsHandler(optimizer),
event_name=Events.ITERATION_STARTED
)
# or equivalently
npt_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer
)
"""
def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None):
super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)
def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, NeptuneLogger):
raise TypeError("Handler OptimizerParamsHandler works only with NeptuneLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
params = {
f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name])
for i, param_group in enumerate(self.optimizer.param_groups)
}
for k, v in params.items():
logger.log_metric(k, x=global_step, y=v)
[docs]class WeightsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's weights as scalars.
Handler, upon construction, iterates over named parameters of the model and keep
reference to ones permitted by `whitelist`. Then at every call, applies
reduction function to each parameter, produces a scalar and logs it.
Args:
model: model to log weights
reduction: function to reduce parameters into scalar
tag: common title for all produced plots. For example, "generator"
whitelist: specific weights to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if it should be logged. Names should be fully-qualified.
For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's weights are logged.
Examples:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# Create a logger
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Attach the logger to the trainer to log model's weights norm after each iteration
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, reduction=torch.norm)
)
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Log only `fc` weights
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(
model,
whitelist=['fc']
)
)
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Log weights which have `bias` in their names
def has_bias_in_name(n, p):
return 'bias' in n
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, NeptuneLogger):
raise TypeError("Handler WeightsScalarHandler works only with NeptuneLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
if p.grad is None:
continue
name = name.replace(".", "/")
logger.log_metric(
f"{tag_prefix}weights_{self.reduction.__name__}/{name}",
x=global_step,
y=self.reduction(p.data),
)
[docs]class GradsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's gradients as scalars.
Handler, upon construction, iterates over named parameters of the model and keep
reference to ones permitted by the `whitelist`. Then at every call, applies
reduction function to each parameter's gradient, produces a scalar and logs it.
Args:
model: model to log weights
reduction: function to reduce parameters into scalar
tag: common title for all produced plots. For example, "generator"
whitelist: specific gradients to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if its gradient should be logged. Names should be
fully-qualified. For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's gradients are logged.
Examples:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# Create a logger
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Attach the logger to the trainer to log model's weights norm after each iteration
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, reduction=torch.norm)
)
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Log gradient of `base`
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(
model,
reduction=torch.norm,
whitelist=['base']
)
)
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
# Log gradient of weights which belong to a `fc` layer
def is_in_fc_layer(n, p):
return 'fc' in n
npt_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, NeptuneLogger):
raise TypeError("Handler GradsScalarHandler works only with NeptuneLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
if p.grad is None:
continue
name = name.replace(".", "/")
logger.log_metric(
f"{tag_prefix}grads_{self.reduction.__name__}/{name}", x=global_step, y=self.reduction(p.grad)
)
[docs]class NeptuneSaver(BaseSaveHandler):
"""Handler that saves input checkpoint to the Neptune server.
Args:
neptune_logger: an instance of
NeptuneLogger class.
Examples:
.. code-block:: python
from ignite.contrib.handlers.neptune_logger import *
# Create a logger
# We are using the api_token for the anonymous user neptuner but you can use your own.
npt_logger = NeptuneLogger(
api_token="ANONYMOUS",
project_name="shared/pytorch-ignite-integration",
experiment_name="cnn-mnist", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-ignite","minst"] # Optional
)
...
evaluator = create_supervised_evaluator(model, metrics=metrics, ...)
...
from ignite.handlers import Checkpoint
def score_function(engine):
return engine.state.metrics["accuracy"]
to_save = {"model": model}
# pass neptune logger to NeptuneServer
handler = Checkpoint(
to_save,
NeptuneSaver(npt_logger), n_saved=2,
filename_prefix="best", score_function=score_function,
score_name="validation_accuracy",
global_step_transform=global_step_from_engine(trainer)
)
evaluator.add_event_handler(Events.COMPLETED, handler)
# We need to close the logger when we are done
npt_logger.close()
For example, you can access model checkpoints and download them from here:
https://ui.neptune.ai/o/shared/org/pytorch-ignite-integration/e/PYTOR1-18/charts
"""
@idist.one_rank_only()
def __init__(self, neptune_logger: NeptuneLogger):
self._logger = neptune_logger
@idist.one_rank_only()
def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None:
# wont work on XLA
with tempfile.NamedTemporaryFile() as tmp:
# we can not use tmp.name to open tmp.file twice on Win32
# https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
torch.save(checkpoint, tmp.file)
self._logger.log_artifact(tmp.name, filename)
[docs] @idist.one_rank_only(with_barrier=True)
def remove(self, filename: str) -> None:
self._logger.delete_artifacts(filename)