"""ClearML logger and its helper handlers."""
import os
import tempfile
import warnings
from collections import defaultdict
from datetime import datetime
from enum import Enum
from typing import Any, Callable, DefaultDict, List, Mapping, Optional, Tuple, Type, Union
from torch.optim import Optimizer
import ignite.distributed as idist
from ignite.contrib.handlers.base_logger import (
BaseLogger,
BaseOptimizerParamsHandler,
BaseOutputHandler,
BaseWeightsHandler,
BaseWeightsScalarHandler,
)
from ignite.engine import Engine, Events
from ignite.handlers import global_step_from_engine
from ignite.handlers.checkpoint import DiskSaver
__all__ = [
"ClearMLLogger",
"ClearMLSaver",
"OptimizerParamsHandler",
"OutputHandler",
"WeightsScalarHandler",
"WeightsHistHandler",
"GradsScalarHandler",
"GradsHistHandler",
"global_step_from_engine",
]
[docs]class ClearMLLogger(BaseLogger):
"""
`ClearML <https://github.com/allegroai/clearml>`_ handler to log metrics, text, model/optimizer parameters,
plots during training and validation.
Also supports model checkpoints logging and upload to the storage solution of your choice (i.e. ClearML File server,
S3 bucket etc.)
.. code-block:: bash
pip install clearml
clearml-init
Args:
kwargs: Keyword arguments accepted from ``Task.init`` method.
All arguments are optional. If a ClearML Task has already been created,
kwargs will be ignored and the current ClearML Task will be used.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log training loss at each iteration
clearml_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {"loss": loss}
)
# Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
# We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer` instead of `train_evaluator`.
clearml_logger.attach_output_handler(
train_evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="training",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer),
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
# `trainer` instead of `evaluator`.
clearml_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)),
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
clearml_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer,
param_name='lr' # optional
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model)
)
"""
def __init__(self, **kwargs: Any):
try:
from clearml import Task
from clearml.binding.frameworks.tensorflow_bind import WeightsGradientHistHelper
except ImportError:
try:
# Backwards-compatibility for legacy Trains SDK
from trains import Task
from trains.binding.frameworks.tensorflow_bind import WeightsGradientHistHelper
except ImportError:
raise RuntimeError(
"This contrib module requires clearml to be installed. "
"You may install clearml using: \n pip install clearml \n"
)
experiment_kwargs = {k: v for k, v in kwargs.items() if k not in ("project_name", "task_name", "task_type")}
if self.bypass_mode():
warnings.warn("ClearMLSaver: running in bypass mode")
class _Stub(object):
def __call__(self, *_: Any, **__: Any) -> "_Stub":
return self
def __getattr__(self, attr: str) -> "_Stub":
if attr in ("name", "id"):
return "" # type: ignore[return-value]
return self
def __setattr__(self, attr: str, val: Any) -> None:
pass
self._task = _Stub()
else:
# Try to retrieve current the ClearML Task before trying to create a new one
self._task = Task.current_task()
if self._task is None:
self._task = Task.init(
project_name=kwargs.get("project_name"),
task_name=kwargs.get("task_name"),
task_type=kwargs.get("task_type", Task.TaskTypes.training),
**experiment_kwargs,
)
self.clearml_logger = self._task.get_logger()
self.grad_helper = WeightsGradientHistHelper(logger=self.clearml_logger, report_freq=1)
[docs] @classmethod
def set_bypass_mode(cls, bypass: bool) -> None:
"""
Will bypass all outside communication, and will drop all logs.
Should only be used in "standalone mode", when there is no access to the *clearml-server*.
Args:
bypass: If ``True``, all outside communication is skipped.
"""
setattr(cls, "_bypass", bypass)
[docs] @classmethod
def bypass_mode(cls) -> bool:
"""
Returns the bypass mode state.
Note:
`GITHUB_ACTIONS` env will automatically set bypass_mode to ``True``
unless overridden specifically with ``ClearMLLogger.set_bypass_mode(False)``.
Return:
If True, all outside communication is skipped.
"""
return getattr(cls, "_bypass", bool(os.environ.get("CI")))
def close(self) -> None:
self.clearml_logger.flush()
def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler":
return OutputHandler(*args, **kwargs)
def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler":
return OptimizerParamsHandler(*args, **kwargs)
[docs]class OutputHandler(BaseOutputHandler):
"""Helper handler to log engine's output and/or metrics
Args:
tag: common title for all produced plots. For example, "training"
metric_names: list of metric names to plot or a string "all" to plot all available
metrics.
output_transform: output transform function to prepare `engine.state.output` as a number.
For example, `output_transform = lambda output: output`
This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
with corresponding keys.
global_step_transform: global step transform function to output a desired global step.
Input of the function is `(engine, event_name)`. Output of function should be an integer.
Default is None, global_step based on attached engine. If provided,
uses function output as global_step. To setup global step from another engine, please use
:meth:`~ignite.contrib.handlers.clearml_logger.global_step_from_engine`.
state_attributes: list of attributes of the ``trainer.state`` to plot.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer`:
clearml_logger.attach(
evaluator,
log_handler=OutputHandler(
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
),
event_name=Events.EPOCH_COMPLETED
)
# or equivalently
clearml_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
)
Another example, where model is evaluated every 500 iterations:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
@trainer.on(Events.ITERATION_COMPLETED(every=500))
def evaluate(engine):
evaluator.run(validation_set, max_epochs=1)
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
def global_step_transform(*args, **kwargs):
return trainer.state.iteration
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# every 500 iterations. Since evaluator engine does not have access to the training iteration, we
# provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
# evaluator metrics are plotted on ClearML.
clearml_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metrics=["nll", "accuracy"],
global_step_transform=global_step_transform
)
Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta``
are also logged along with the NLL and Accuracy after each iteration:
.. code-block:: python
clearml_logger.attach(
trainer,
log_handler=OutputHandler(
tag="training",
metric_names=["nll", "accuracy"],
state_attributes=["alpha", "beta"],
),
event_name=Events.ITERATION_COMPLETED
)
Example of `global_step_transform`
.. code-block:: python
def global_step_transform(engine, event_name):
return engine.state.get_event_attrib_value(event_name)
.. versionchanged:: 0.4.7
accepts an optional list of `state_attributes`
"""
def __init__(
self,
tag: str,
metric_names: Optional[List[str]] = None,
output_transform: Optional[Callable] = None,
global_step_transform: Optional[Callable] = None,
state_attributes: Optional[List[str]] = None,
):
super(OutputHandler, self).__init__(
tag, metric_names, output_transform, global_step_transform, state_attributes
)
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler OutputHandler works only with ClearMLLogger")
metrics = self._setup_output_metrics_state_attrs(engine)
global_step = self.global_step_transform(engine, event_name) # type: ignore[misc]
if not isinstance(global_step, int):
raise TypeError(
f"global_step must be int, got {type(global_step)}."
" Please check the output of global_step_transform."
)
for key, value in metrics.items():
if len(key) == 2:
logger.clearml_logger.report_scalar(title=key[0], series=key[1], iteration=global_step, value=value)
elif len(key) == 3:
logger.clearml_logger.report_scalar(
title=f"{key[0]}/{key[1]}", series=key[2], iteration=global_step, value=value
)
[docs]class OptimizerParamsHandler(BaseOptimizerParamsHandler):
"""Helper handler to log optimizer parameters
Args:
optimizer: torch optimizer or any object with attribute ``param_groups``
as a sequence.
param_name: parameter name
tag: common title for all produced plots. For example, "generator"
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
clearml_logger.attach(
trainer,
log_handler=OptimizerParamsHandler(optimizer),
event_name=Events.ITERATION_STARTED
)
# or equivalently
clearml_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer
)
"""
def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None):
super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler OptimizerParamsHandler works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
params = {
str(i): float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups)
}
for k, v in params.items():
logger.clearml_logger.report_scalar(
title=f"{tag_prefix}{self.param_name}", series=k, value=v, iteration=global_step
)
[docs]class WeightsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's weights as scalars.
Handler, upon construction, iterates over named parameters of the model and keep
reference to ones permitted by `whitelist`. Then at every call, applies
reduction function to each parameter, produces a scalar and logs it.
Args:
model: model to log weights
reduction: function to reduce parameters into scalar
tag: common title for all produced plots. For example, "generator"
whitelist: specific weights to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if it should be logged. Names should be fully-qualified.
For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's weights are logged.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, reduction=torch.norm)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log only `fc` weights
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(
model,
whitelist=['fc']
)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log weights which have `bias` in their names
def has_bias_in_name(n, p):
return 'bias' in n
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler WeightsScalarHandler works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
title_name, _, series_name = name.partition(".")
logger.clearml_logger.report_scalar(
title=f"{tag_prefix}weights_{self.reduction.__name__}/{title_name}",
series=series_name,
value=self.reduction(p.data),
iteration=global_step,
)
[docs]class WeightsHistHandler(BaseWeightsHandler):
"""Helper handler to log model's weights as histograms.
Args:
model: model to log weights
tag: common title for all produced plots. For example, 'generator'
whitelist: specific weights to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if it should be logged. Names should be fully-qualified.
For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's weights are logged.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log weights of `fc` layer
weights = ['fc']
# Attach the logger to the trainer to log weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model, whitelist=weights)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log weights which name include 'conv'.
weight_selector = lambda name, p: 'conv' in name
# Attach the logger to the trainer to log weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model, whitelist=weight_selector)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler 'WeightsHistHandler' works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
title_name, _, series_name = name.partition(".")
logger.grad_helper.add_histogram(
title=f"{tag_prefix}weights_{title_name}",
series=series_name,
step=global_step,
hist_data=p.data.cpu().numpy(),
)
[docs]class GradsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's gradients as scalars.
Handler, upon construction, iterates over named parameters of the model and keep
reference to ones permitted by the `whitelist`. Then at every call, applies
reduction function to each parameter's gradient, produces a scalar and logs it.
Args:
model: model to log weights
reduction: function to reduce parameters into scalar
tag: common title for all produced plots. For example, "generator"
whitelist: specific gradients to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if its gradient should be logged. Names should be
fully-qualified. For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's gradients are logged.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, reduction=torch.norm)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of `base`
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(
model,
reduction=torch.norm,
whitelist=['base']
)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of weights which belong to a `fc` layer
def is_in_fc_layer(n, p):
return 'fc' in n
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler GradsScalarHandler works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
if p.grad is None:
continue
title_name, _, series_name = name.partition(".")
logger.clearml_logger.report_scalar(
title=f"{tag_prefix}grads_{self.reduction.__name__}/{title_name}",
series=series_name,
value=self.reduction(p.grad),
iteration=global_step,
)
[docs]class GradsHistHandler(BaseWeightsHandler):
"""Helper handler to log model's gradients as histograms.
Args:
model: model to log weights
tag: common title for all produced plots. For example, 'generator'
whitelist: specific gradients to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if its gradient should be logged. Names should be
fully-qualified. For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's gradients are logged.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model)
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of `fc.bias`
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model, whitelist=['fc.bias'])
)
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of weights which have shape (2, 1)
def has_shape_2_1(n, p):
return p.shape == (2,1)
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model, whitelist=has_shape_2_1)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler 'GradsHistHandler' works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
if p.grad is None:
continue
title_name, _, series_name = name.partition(".")
logger.grad_helper.add_histogram(
title=f"{tag_prefix}grads_{title_name}",
series=series_name,
step=global_step,
hist_data=p.grad.cpu().numpy(),
)
[docs]class ClearMLSaver(DiskSaver):
"""
Handler that saves input checkpoint as ClearML artifacts
Args:
logger: An instance of :class:`~ignite.contrib.handlers.clearml_logger.ClearMLLogger`,
ensuring a valid ClearML ``Task`` has been initialized. If not provided, and a ClearML Task
has not been manually initialized, a runtime error will be raised.
output_uri: The default location for output models and other artifacts uploaded by ClearML. For
more information, see ``clearml.Task.init``.
dirname: Directory path where the checkpoint will be saved. If not provided, a temporary
directory will be created.
Examples:
.. code-block:: python
from ignite.contrib.handlers.clearml_logger import *
from ignite.handlers import Checkpoint
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
to_save = {"model": model}
handler = Checkpoint(
to_save,
ClearMLSaver(),
n_saved=1,
score_function=lambda e: 123,
score_name="acc",
filename_prefix="best",
global_step_transform=global_step_from_engine(trainer)
)
validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler)
"""
def __init__(
self,
logger: Optional[ClearMLLogger] = None,
output_uri: Optional[str] = None,
dirname: Optional[str] = None,
*args: Any,
**kwargs: Any,
):
self._setup_check_clearml(logger, output_uri)
if not dirname:
dirname = ""
if idist.get_rank() == 0:
dirname = tempfile.mkdtemp(prefix=f"ignite_checkpoints_{datetime.now().strftime('%Y_%m_%d_%H_%M_%S_')}")
if idist.get_world_size() > 1:
dirname = idist.all_gather(dirname)[0] # type: ignore[index, assignment]
warnings.warn(f"ClearMLSaver created a temporary checkpoints directory: {dirname}")
idist.barrier()
# Let's set non-atomic tmp dir saving behaviour
if "atomic" not in kwargs:
kwargs["atomic"] = False
self._checkpoint_slots = defaultdict(list) # type: DefaultDict[Union[str, Tuple[str, str]], List[Any]]
super(ClearMLSaver, self).__init__(dirname=dirname, *args, **kwargs) # type: ignore[misc]
@idist.one_rank_only()
def _setup_check_clearml(self, logger: ClearMLLogger, output_uri: str) -> None:
try:
from clearml import Task
except ImportError:
try:
# Backwards-compatibility for legacy Trains SDK
from trains import Task
except ImportError:
raise RuntimeError(
"This contrib module requires clearml to be installed. "
"You may install clearml using: \n pip install clearml \n"
)
if logger and not isinstance(logger, ClearMLLogger):
raise TypeError("logger must be an instance of ClearMLLogger")
self._task = Task.current_task()
if not self._task:
raise RuntimeError(
"ClearMLSaver requires a ClearML Task to be initialized. "
"Please use the `logger` argument or call `clearml.Task.init()`."
)
if output_uri:
self._task.output_uri = output_uri
class _CallbacksContext:
def __init__(
self,
callback_type: Type[Enum],
slots: List,
checkpoint_key: str,
filename: str,
basename: str,
metadata: Optional[Mapping] = None,
) -> None:
self._callback_type = callback_type
self._slots = slots
self._checkpoint_key = str(checkpoint_key)
self._filename = filename
self._basename = basename
self._metadata = metadata
def pre_callback(self, action: str, model_info: Any) -> Any:
if action != self._callback_type.save: # type: ignore[attr-defined]
return model_info
try:
slot = self._slots.index(None)
self._slots[slot] = model_info.upload_filename
except ValueError:
self._slots.append(model_info.upload_filename)
slot = len(self._slots) - 1
model_info.upload_filename = f"{self._basename}_{slot}{os.path.splitext(self._filename)[1]}"
model_info.local_model_id = f"{self._checkpoint_key}:{model_info.upload_filename}"
return model_info
def post_callback(self, action: str, model_info: Any) -> Any:
if action != self._callback_type.save: # type: ignore[attr-defined]
return model_info
model_info.model.name = f"{model_info.task.name}: {self._filename}"
prefix = "Checkpoint Metadata: "
metadata_items = ", ".join(f"{k}={v}" for k, v in self._metadata.items()) if self._metadata else "none"
metadata = f"{prefix}{metadata_items}"
comment = "\n".join(
metadata if line.startswith(prefix) else line for line in (model_info.model.comment or "").split("\n")
)
if prefix not in comment:
comment += "\n" + metadata
model_info.model.comment = comment
return model_info
def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None:
try:
from clearml.binding.frameworks import WeightsFileHandler
except ImportError:
try:
# Backwards-compatibility for legacy Trains SDK
from trains.binding.frameworks import WeightsFileHandler
except ImportError:
raise RuntimeError(
"This contrib module requires clearml to be installed. "
"You may install clearml using: \n pip install clearml \n"
)
try:
basename = metadata["basename"] # type: ignore[index]
except (TypeError, KeyError):
warnings.warn("Checkpoint metadata missing or basename cannot be found")
basename = "checkpoint"
checkpoint_key = (str(self.dirname), basename)
cb_context = self._CallbacksContext(
callback_type=WeightsFileHandler.CallbackType,
slots=self._checkpoint_slots[checkpoint_key],
checkpoint_key=str(checkpoint_key),
filename=filename,
basename=basename,
metadata=metadata,
)
pre_cb_id = WeightsFileHandler.add_pre_callback(cb_context.pre_callback)
post_cb_id = WeightsFileHandler.add_post_callback(cb_context.post_callback)
try:
super(ClearMLSaver, self).__call__(checkpoint, filename, metadata)
finally:
WeightsFileHandler.remove_pre_callback(pre_cb_id)
WeightsFileHandler.remove_post_callback(post_cb_id)
[docs] @idist.one_rank_only()
def get_local_copy(self, filename: str) -> Optional[str]:
"""Get artifact local copy.
.. warning::
In distributed configuration this method should be called on rank 0 process.
Args:
filename: artifact name.
Returns:
a local path to a downloaded copy of the artifact
"""
artifact = self._task.artifacts.get(filename)
if artifact:
return artifact.get_local_copy()
self._task.get_logger().report_text(f"Can not find artifact {filename}")
return None
[docs] @idist.one_rank_only()
def remove(self, filename: str) -> None:
super(ClearMLSaver, self).remove(filename)
for slots in self._checkpoint_slots.values():
try:
slots[slots.index(filename)] = None
except ValueError:
pass
else:
break