JaccardIndex#
- ignite.metrics.JaccardIndex(cm, ignore_index=None)[source]#
Calculates the Jaccard Index using
ConfusionMatrix
metric. Implementation is based onIoU()
.- Parameters
cm (ConfusionMatrix) – instance of confusion matrix metric
ignore_index (Optional[int]) – index to ignore, e.g. background index
- Returns
MetricsLambda
- Return type
Examples
cm = ConfusionMatrix(num_classes=3) metric = JaccardIndex(cm, ignore_index=0) metric.attach(default_evaluator, 'jac') y_true = torch.Tensor([0, 1, 0, 1, 2]).long() y_pred = torch.Tensor([ [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], ]) state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['jac'])
tensor([0.5000, 0.0000], dtype=torch.float64)