ParamGroupScheduler#
- class ignite.handlers.param_scheduler.ParamGroupScheduler(schedulers, names=None, save_history=False)[source]#
Scheduler helper to group multiple schedulers into one.
- Parameters
Examples
optimizer = torch.optim.SGD( [ {"params": default_model.base.parameters(), "lr": 0.001}, {"params": default_model.fc.parameters(), "lr": 0.01}, ] ) # CosineAnnealing increases the learning rate from 0.0 to 1.0 # over a cycle of 4 iterations scheduler_1 = CosineAnnealingScheduler(optimizer, "lr", 0.0, 1.0, 4, param_group_index=0) # CosineAnnealing increases the learning rate from 0.0 to 0.1 # over a cycle of 4 iterations scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", 0.0, 0.1, 4, param_group_index=1) scheduler = ParamGroupScheduler(schedulers=[scheduler_1, scheduler_2], names=["lr (base)", "lr (fc)"]) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(optimizer.param_groups[0]["lr"], optimizer.param_groups[1]["lr"]) default_trainer.run([0] * 8, max_epochs=1)
0.0 0.0 0.1464... 0.01464... 0.4999... 0.04999... 0.8535... 0.08535... ...
New in version 0.4.5.
Methods
Copies parameters from
state_dict
into this ParamScheduler.Method to simulate scheduled values during num_events events.
Returns a dictionary containing a whole state of ParamGroupScheduler.
- load_state_dict(state_dict)[source]#
Copies parameters from
state_dict
into this ParamScheduler.- Parameters
state_dict (Mapping) – a dict containing parameters.
- Return type
None