MedianAbsoluteError#
- class ignite.contrib.metrics.regression.MedianAbsoluteError(output_transform=<function MedianAbsoluteError.<lambda>>, device=device(type='cpu'))[source]#
Calculates the Median Absolute Error.
where is the ground truth and is the predicted value.
More details can be found in Botchkarev 2018.
update
must receive output of the form(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.y and y_pred must be of same shape (N, ) or (N, 1) and of type float32.
Warning
Current implementation stores all input data (output and target) in as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger than available RAM.
- Parameters
output_transform (Callable) – a callable that is used to transform the
Engine
’sprocess_function
’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.device (Union[str, device]) – optional device specification for internal storage.
Examples
To use with
Engine
andprocess_function
, simply attach the metric instance to the engine. The output of the engine’sprocess_function
needs to be in format of(y_pred, y)
or{'y_pred': y_pred, 'y': y, ...}
.metric = MedianAbsoluteError() metric.attach(default_evaluator, 'mae') y_true = torch.Tensor([0, 1, 2, 3, 4, 5]) y_pred = y_true * 0.75 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['mae'])
0.5...
Methods