FractionalBias#
- class ignite.contrib.metrics.regression.FractionalBias(output_transform=<function Metric.<lambda>>, device=device(type='cpu'))[source]#
Calculates the Fractional Bias.
where is the ground truth and is the predicted value.
More details can be found in Botchkarev 2018.
update
must receive output of the form(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.y and y_pred must be of same shape (N, ) or (N, 1).
Parameters are inherited from
Metric.__init__
.- Parameters
output_transform (Callable) – a callable that is used to transform the
Engine
’sprocess_function
’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.device (Union[str, device]) – specifies which device updates are accumulated on. Setting the metric’s device to be the same as your
update
arguments ensures theupdate
method is non-blocking. By default, CPU.
Examples
To use with
Engine
andprocess_function
, simply attach the metric instance to the engine. The output of the engine’sprocess_function
needs to be in format of(y_pred, y)
or{'y_pred': y_pred, 'y': y, ...}
.metric = FractionalBias() metric.attach(default_evaluator, 'fractional_bias') y_pred = torch.Tensor([[3.8], [9.9], [5.4], [2.1]]) y_true = y_pred * 1.5 state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['fractional_bias'])
0.4000...
Changed in version 0.4.5: - Works with DDP.
Methods
Computes the metric based on it's accumulated state.
Resets the metric to it's initial state.
- compute()[source]#
Computes the metric based on it’s accumulated state.
By default, this is called at the end of each epoch.
- Returns
- the actual quantity of interest. However, if a
Mapping
is returned, it will be (shallow) flattened into engine.state.metrics whencompleted()
is called. - Return type
Any
- Raises
NotComputableError – raised when the metric cannot be computed.