Source code for ignite.metrics.mean_pairwise_distance
from typing import Callable, Sequence, Union
import torch
from torch.nn.functional import pairwise_distance
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
__all__ = ["MeanPairwiseDistance"]
[docs]class MeanPairwiseDistance(Metric):
"""Calculates the mean :class:`~torch.nn.PairwiseDistance`.
Average of pairwise distances computed on provided batches.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
Args:
p: the norm degree. Default: 2
eps: Small value to avoid division by zero. Default: 1e-6
output_transform: a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
device: specifies which device updates are accumulated on. Setting the
metric's device to be the same as your ``update`` arguments ensures the ``update`` method is
non-blocking. By default, CPU.
Examples:
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
The output of the engine's ``process_function`` needs to be in the format of
``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added
to the metric to transform the output into the form expected by the metric.
``y_pred`` and ``y`` should have the same shape.
.. testcode::
metric = MeanPairwiseDistance(p=4)
metric.attach(default_evaluator, 'mpd')
preds = torch.Tensor([
[1, 2, 4, 1],
[2, 3, 1, 5],
[1, 3, 5, 1],
[1, 5, 1 ,11]
])
target = preds * 0.75
state = default_evaluator.run([[preds, target]])
print(state.metrics['mpd'])
.. testoutput::
1.5955...
"""
def __init__(
self,
p: int = 2,
eps: float = 1e-6,
output_transform: Callable = lambda x: x,
device: Union[str, torch.device] = torch.device("cpu"),
) -> None:
super(MeanPairwiseDistance, self).__init__(output_transform, device=device)
self._p = p
self._eps = eps
[docs] @reinit__is_reduced
def reset(self) -> None:
self._sum_of_distances = torch.tensor(0.0, device=self._device)
self._num_examples = 0
[docs] @reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output[0].detach(), output[1].detach()
distances = pairwise_distance(y_pred, y, p=self._p, eps=self._eps)
self._sum_of_distances += torch.sum(distances).to(self._device)
self._num_examples += y.shape[0]
[docs] @sync_all_reduce("_sum_of_distances", "_num_examples")
def compute(self) -> Union[float, torch.Tensor]:
if self._num_examples == 0:
raise NotComputableError("MeanAbsoluteError must have at least one example before it can be computed.")
return self._sum_of_distances.item() / self._num_examples