Shortcuts

Source code for ignite.contrib.handlers.mlflow_logger

"""MLflow logger and its helper handlers."""
import warnings
from typing import Any, Callable, List, Optional, Union

from torch.optim import Optimizer

from ignite.contrib.handlers.base_logger import BaseLogger, BaseOptimizerParamsHandler, BaseOutputHandler
from ignite.engine import Engine, Events
from ignite.handlers import global_step_from_engine

__all__ = ["MLflowLogger", "OutputHandler", "OptimizerParamsHandler", "global_step_from_engine"]


[docs]class MLflowLogger(BaseLogger): """ `MLflow <https://mlflow.org>`_ tracking client handler to log parameters and metrics during the training and validation. This class requires `mlflow package <https://github.com/mlflow/mlflow/>`_ to be installed: .. code-block:: bash pip install mlflow Args: tracking_uri: MLflow tracking uri. See MLflow docs for more details Examples: .. code-block:: python from ignite.contrib.handlers.mlflow_logger import * # Create a logger mlflow_logger = MLflowLogger() # Log experiment parameters: mlflow_logger.log_params({ "seed": seed, "batch_size": batch_size, "model": model.__class__.__name__, "pytorch version": torch.__version__, "ignite version": ignite.__version__, "cuda version": torch.version.cuda, "device name": torch.cuda.get_device_name(0) }) # Attach the logger to the trainer to log training loss at each iteration mlflow_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {'loss': loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. mlflow_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. mlflow_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration mlflow_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) """ def __init__(self, tracking_uri: Optional[str] = None): try: import mlflow except ImportError: raise RuntimeError( "This contrib module requires mlflow to be installed. " "Please install it with command: \n pip install mlflow" ) if tracking_uri is not None: mlflow.set_tracking_uri(tracking_uri) self.active_run = mlflow.active_run() if self.active_run is None: self.active_run = mlflow.start_run() def __getattr__(self, attr: Any) -> Any: import mlflow return getattr(mlflow, attr) def close(self) -> None: import mlflow mlflow.end_run() def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler": return OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler": return OptimizerParamsHandler(*args, **kwargs)
[docs]class OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics. Args: tag: common title for all produced plots. For example, 'training' metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{'loss': loss1, 'another_loss': loss2}` to label the plot with corresponding keys. global_step_transform: global step transform function to output a desired global step. Input of the function is `(engine, event_name)`. Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use :meth:`~ignite.contrib.handlers.mlflow_logger.global_step_from_engine`. state_attributes: list of attributes of the ``trainer.state`` to plot. Examples: .. code-block:: python from ignite.contrib.handlers.mlflow_logger import * # Create a logger mlflow_logger = MLflowLogger() # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: mlflow_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently mlflow_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ) Another example, where model is evaluated every 500 iterations: .. code-block:: python from ignite.contrib.handlers.mlflow_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) mlflow_logger = MLflowLogger() def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on MLflow. mlflow_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform ) Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta`` are also logged along with the NLL and Accuracy after each iteration: .. code-block:: python mlflow_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", metrics=["nll", "accuracy"], state_attributes=["alpha", "beta"], ) Example of `global_step_transform`: .. code-block:: python def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name) .. versionchanged:: 0.4.7 accepts an optional list of `state_attributes` """ def __init__( self, tag: str, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, global_step_transform: Optional[Callable] = None, state_attributes: Optional[List[str]] = None, ) -> None: super(OutputHandler, self).__init__( tag, metric_names, output_transform, global_step_transform, state_attributes ) def __call__(self, engine: Engine, logger: MLflowLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, MLflowLogger): raise TypeError("Handler 'OutputHandler' works only with MLflowLogger") rendered_metrics = self._setup_output_metrics_state_attrs(engine) global_step = self.global_step_transform(engine, event_name) # type: ignore[misc] if not isinstance(global_step, int): raise TypeError( f"global_step must be int, got {type(global_step)}." " Please check the output of global_step_transform." ) # Additionally recheck metric names as MLflow rejects non-valid names with MLflowException from mlflow.utils.validation import _VALID_PARAM_AND_METRIC_NAMES metrics = {} for keys, value in rendered_metrics.items(): key = " ".join(keys) metrics[key] = value for key in list(metrics.keys()): if not _VALID_PARAM_AND_METRIC_NAMES.match(key): warnings.warn( f"MLflowLogger output_handler encountered an invalid metric name '{key}' that " "will be ignored and not logged to MLflow" ) del metrics[key] logger.log_metrics(metrics, step=global_step)
[docs]class OptimizerParamsHandler(BaseOptimizerParamsHandler): """Helper handler to log optimizer parameters Args: optimizer: torch optimizer or any object with attribute ``param_groups`` as a sequence. param_name: parameter name tag: common title for all produced plots. For example, 'generator' Examples: .. code-block:: python from ignite.contrib.handlers.mlflow_logger import * # Create a logger mlflow_logger = MLflowLogger() # Optionally, user can specify tracking_uri with corresponds to MLFLOW_TRACKING_URI # mlflow_logger = MLflowLogger(tracking_uri="uri") # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration mlflow_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently mlflow_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer ) """ def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None): super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag) def __call__(self, engine: Engine, logger: MLflowLogger, event_name: Union[str, Events]) -> None: if not isinstance(logger, MLflowLogger): raise TypeError("Handler OptimizerParamsHandler works only with MLflowLogger") global_step = engine.state.get_event_attrib_value(event_name) tag_prefix = f"{self.tag} " if self.tag else "" params = { f"{tag_prefix}{self.param_name} group_{i}": float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups) } logger.log_metrics(params, step=global_step)

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 11/07/2024, 2:16:32 PM.

Built with Sphinx using a theme provided by Read the Docs.