clearml_logger#
ClearML logger and its helper handlers.
Classes
ClearML handler to log metrics, text, model/optimizer parameters, plots during training and validation. |
|
Handler that saves input checkpoint as ClearML artifacts |
|
Helper handler to log model's gradients as histograms. |
|
Helper handler to log model's gradients as scalars. |
|
Helper handler to log optimizer parameters |
|
Helper handler to log engine's output and/or metrics |
|
Helper handler to log model's weights as histograms. |
|
Helper handler to log model's weights as scalars. |
- class ignite.contrib.handlers.clearml_logger.ClearMLLogger(**kwargs)[source]#
ClearML handler to log metrics, text, model/optimizer parameters, plots during training and validation. Also supports model checkpoints logging and upload to the storage solution of your choice (i.e. ClearML File server, S3 bucket etc.)
pip install clearml clearml-init
- Parameters
kwargs (Any) – Keyword arguments accepted from clearml.Task. All arguments are optional.
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log training loss at each iteration clearml_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED, tag="training", output_transform=lambda loss: {"loss": loss} ) # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer` instead of `train_evaluator`. clearml_logger.attach_output_handler( train_evaluator, event_name=Events.EPOCH_COMPLETED, tag="training", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer), ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the # `trainer` instead of `evaluator`. clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer)), ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer, param_name='lr' # optional ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model) )
- class ignite.contrib.handlers.clearml_logger.ClearMLSaver(logger=None, output_uri=None, dirname=None, *args, **kwargs)[source]#
Handler that saves input checkpoint as ClearML artifacts
- Parameters
logger (Optional[ClearMLLogger]) – An instance of
ClearMLLogger
, ensuring a valid ClearMLTask
has been initialized. If not provided, and a ClearML Task has not been manually initialized, a runtime error will be raised.output_uri (Optional[str]) – The default location for output models and other artifacts uploaded by ClearML. For more information, see
clearml.Task.init
.dirname (Optional[str]) – Directory path where the checkpoint will be saved. If not provided, a temporary directory will be created.
args (Any) –
kwargs (Any) –
Examples
from ignite.contrib.handlers.clearml_logger import * from ignite.handlers import Checkpoint clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) to_save = {"model": model} handler = Checkpoint( to_save, ClearMLSaver(), n_saved=1, score_function=lambda e: 123, score_name="acc", filename_prefix="best", global_step_transform=global_step_from_engine(trainer) ) validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler)
- class ignite.contrib.handlers.clearml_logger.GradsHistHandler(model, tag=None)[source]#
Helper handler to log model’s gradients as histograms.
- Parameters
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsHistHandler(model) )
- class ignite.contrib.handlers.clearml_logger.GradsScalarHandler(model, reduction=<function norm>, tag=None)[source]#
Helper handler to log model’s gradients as scalars. Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar.
- Parameters
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=GradsScalarHandler(model, reduction=torch.norm) )
- class ignite.contrib.handlers.clearml_logger.OptimizerParamsHandler(optimizer, param_name='lr', tag=None)[source]#
Helper handler to log optimizer parameters
- Parameters
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration clearml_logger.attach( trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED ) # or equivalently clearml_logger.attach_opt_params_handler( trainer, event_name=Events.ITERATION_STARTED, optimizer=optimizer )
- class ignite.contrib.handlers.clearml_logger.OutputHandler(tag, metric_names=None, output_transform=None, global_step_transform=None, state_attributes=None)[source]#
Helper handler to log engine’s output and/or metrics
- Parameters
tag (str) – common title for all produced plots. For example, “training”
metric_names (Optional[List[str]]) – list of metric names to plot or a string “all” to plot all available metrics.
output_transform (Optional[Callable]) – output transform function to prepare engine.state.output as a number. For example, output_transform = lambda output: output This function can also return a dictionary, e.g {“loss”: loss1, “another_loss”: loss2} to label the plot with corresponding keys.
global_step_transform (Optional[Callable]) – global step transform function to output a desired global step. Input of the function is (engine, event_name). Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use
global_step_from_engine()
.state_attributes (Optional[List[str]]) – list of attributes of the
trainer.state
to plot.
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch # of the `trainer`: clearml_logger.attach( evaluator, log_handler=OutputHandler( tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) ), event_name=Events.EPOCH_COMPLETED ) # or equivalently clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metric_names=["nll", "accuracy"], global_step_transform=global_step_from_engine(trainer) )
Another example, where model is evaluated every 500 iterations:
from ignite.contrib.handlers.clearml_logger import * @trainer.on(Events.ITERATION_COMPLETED(every=500)) def evaluate(engine): evaluator.run(validation_set, max_epochs=1) # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) def global_step_transform(*args, **kwargs): return trainer.state.iteration # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after # every 500 iterations. Since evaluator engine does not have access to the training iteration, we # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time # evaluator metrics are plotted on ClearML. clearml_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag="validation", metrics=["nll", "accuracy"], global_step_transform=global_step_transform )
Another example where the State Attributes
trainer.state.alpha
andtrainer.state.beta
are also logged along with the NLL and Accuracy after each iteration:clearml_logger.attach( trainer, log_handler=OutputHandler( tag="training", metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], ), event_name=Events.ITERATION_COMPLETED )
Example of global_step_transform
def global_step_transform(engine, event_name): return engine.state.get_event_attrib_value(event_name)
Changed in version 0.4.7: accepts an optional list of state_attributes
- class ignite.contrib.handlers.clearml_logger.WeightsHistHandler(model, tag=None)[source]#
Helper handler to log model’s weights as histograms.
- Parameters
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsHistHandler(model) )
- class ignite.contrib.handlers.clearml_logger.WeightsScalarHandler(model, reduction=<function norm>, tag=None)[source]#
Helper handler to log model’s weights as scalars. Handler iterates over named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar.
- Parameters
Examples
from ignite.contrib.handlers.clearml_logger import * # Create a logger clearml_logger = ClearMLLogger( project_name="pytorch-ignite-integration", task_name="cnn-mnist" ) # Attach the logger to the trainer to log model's weights norm after each iteration clearml_logger.attach( trainer, event_name=Events.ITERATION_COMPLETED, log_handler=WeightsScalarHandler(model, reduction=torch.norm) )