Source code for ignite.metrics.mean_absolute_error
from typing import Sequence, Union
import torch
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
__all__ = ["MeanAbsoluteError"]
[docs]class MeanAbsoluteError(Metric):
r"""Calculates `the mean absolute error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_.
.. math:: \text{MAE} = \frac{1}{N} \sum_{i=1}^N \lvert y_{i} - x_{i} \rvert
where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
"""
@reinit__is_reduced
def reset(self) -> None:
self._sum_of_absolute_errors = torch.tensor(0.0, device=self._device)
self._num_examples = 0
@reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output[0].detach(), output[1].detach()
absolute_errors = torch.abs(y_pred - y.view_as(y_pred))
self._sum_of_absolute_errors += torch.sum(absolute_errors).to(self._device)
self._num_examples += y.shape[0]
@sync_all_reduce("_sum_of_absolute_errors", "_num_examples")
def compute(self) -> Union[float, torch.Tensor]:
if self._num_examples == 0:
raise NotComputableError("MeanAbsoluteError must have at least one example before it can be computed.")
return self._sum_of_absolute_errors.item() / self._num_examples