[docs]classMeanAbsoluteError(Metric):r"""Calculates `the mean absolute error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_. .. math:: \text{MAE} = \frac{1}{N} \sum_{i=1}^N \lvert y_{i} - x_{i} \rvert where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. """@reinit__is_reduceddefreset(self)->None:self._sum_of_absolute_errors=torch.tensor(0.0,device=self._device)self._num_examples=0@reinit__is_reduceddefupdate(self,output:Sequence[torch.Tensor])->None:y_pred,y=output[0].detach(),output[1].detach()absolute_errors=torch.abs(y_pred-y.view_as(y_pred))self._sum_of_absolute_errors+=torch.sum(absolute_errors).to(self._device)self._num_examples+=y.shape[0]@sync_all_reduce("_sum_of_absolute_errors","_num_examples")defcompute(self)->Union[float,torch.Tensor]:ifself._num_examples==0:raiseNotComputableError("MeanAbsoluteError must have at least one example before it can be computed.")returnself._sum_of_absolute_errors.item()/self._num_examples