import numbers
import warnings
import torch
from ignite.contrib.handlers.base_logger import (
BaseLogger,
BaseOptimizerParamsHandler,
BaseOutputHandler,
BaseWeightsHistHandler,
BaseWeightsScalarHandler,
)
from ignite.handlers import global_step_from_engine
__all__ = [
"TensorboardLogger",
"OptimizerParamsHandler",
"OutputHandler",
"WeightsScalarHandler",
"WeightsHistHandler",
"GradsScalarHandler",
"GradsHistHandler",
"global_step_from_engine",
]
[docs]class OutputHandler(BaseOutputHandler):
"""Helper handler to log engine's output and/or metrics
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer`:
tb_logger.attach(
evaluator,
log_handler=OutputHandler(
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
),
event_name=Events.EPOCH_COMPLETED
)
# or equivalently
tb_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
)
Another example, where model is evaluated every 500 iterations:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
@trainer.on(Events.ITERATION_COMPLETED(every=500))
def evaluate(engine):
evaluator.run(validation_set, max_epochs=1)
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
def global_step_transform(*args, **kwargs):
return trainer.state.iteration
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# every 500 iterations. Since evaluator engine does not have access to the training iteration, we
# provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
# evaluator metrics are plotted on Tensorboard.
tb_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metrics=["nll", "accuracy"],
global_step_transform=global_step_transform
)
Args:
tag (str): common title for all produced plots. For example, "training"
metric_names (list of str, optional): list of metric names to plot or a string "all" to plot all available
metrics.
output_transform (callable, optional): output transform function to prepare `engine.state.output` as a number.
For example, `output_transform = lambda output: output`
This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
with corresponding keys.
global_step_transform (callable, optional): global step transform function to output a desired global step.
Input of the function is `(engine, event_name)`. Output of function should be an integer.
Default is None, global_step based on attached engine. If provided,
uses function output as global_step. To setup global step from another engine, please use
:meth:`~ignite.contrib.handlers.tensorboard_logger.global_step_from_engine`.
Note:
Example of `global_step_transform`:
.. code-block:: python
def global_step_transform(engine, event_name):
return engine.state.get_event_attrib_value(event_name)
"""
def __init__(self, tag, metric_names=None, output_transform=None, global_step_transform=None):
super(OutputHandler, self).__init__(tag, metric_names, output_transform, global_step_transform)
def __call__(self, engine, logger, event_name):
if not isinstance(logger, TensorboardLogger):
raise RuntimeError("Handler 'OutputHandler' works only with TensorboardLogger")
metrics = self._setup_output_metrics(engine)
global_step = self.global_step_transform(engine, event_name)
if not isinstance(global_step, int):
raise TypeError(
"global_step must be int, got {}."
" Please check the output of global_step_transform.".format(type(global_step))
)
for key, value in metrics.items():
if isinstance(value, numbers.Number) or isinstance(value, torch.Tensor) and value.ndimension() == 0:
logger.writer.add_scalar("{}/{}".format(self.tag, key), value, global_step)
elif isinstance(value, torch.Tensor) and value.ndimension() == 1:
for i, v in enumerate(value):
logger.writer.add_scalar("{}/{}/{}".format(self.tag, key, i), v.item(), global_step)
else:
warnings.warn("TensorboardLogger output_handler can not log metrics value type {}".format(type(value)))
[docs]class OptimizerParamsHandler(BaseOptimizerParamsHandler):
"""Helper handler to log optimizer parameters
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
tb_logger.attach(
trainer,
log_handler=OptimizerParamsHandler(optimizer),
event_name=Events.ITERATION_STARTED
)
# or equivalently
tb_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer
)
Args:
optimizer (torch.optim.Optimizer or object): torch optimizer or any object with attribute ``param_groups``
as a sequence.
param_name (str): parameter name
tag (str, optional): common title for all produced plots. For example, "generator"
"""
def __init__(self, optimizer, param_name="lr", tag=None):
super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)
def __call__(self, engine, logger, event_name):
if not isinstance(logger, TensorboardLogger):
raise RuntimeError("Handler OptimizerParamsHandler works only with TensorboardLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = "{}/".format(self.tag) if self.tag else ""
params = {
"{}{}/group_{}".format(tag_prefix, self.param_name, i): float(param_group[self.param_name])
for i, param_group in enumerate(self.optimizer.param_groups)
}
for k, v in params.items():
logger.writer.add_scalar(k, v, global_step)
[docs]class WeightsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's weights as scalars.
Handler iterates over named parameters of the model, applies reduction function to each parameter
produce a scalar and then logs the scalar.
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the trainer to log model's weights norm after each iteration
tb_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, reduction=torch.norm)
)
Args:
model (torch.nn.Module): model to log weights
reduction (callable): function to reduce parameters into scalar
tag (str, optional): common title for all produced plots. For example, "generator"
"""
def __init__(self, model, reduction=torch.norm, tag=None):
super(WeightsScalarHandler, self).__init__(model, reduction, tag=tag)
def __call__(self, engine, logger, event_name):
if not isinstance(logger, TensorboardLogger):
raise RuntimeError("Handler 'WeightsScalarHandler' works only with TensorboardLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = "{}/".format(self.tag) if self.tag else ""
for name, p in self.model.named_parameters():
if p.grad is None:
continue
name = name.replace(".", "/")
logger.writer.add_scalar(
"{}weights_{}/{}".format(tag_prefix, self.reduction.__name__, name), self.reduction(p.data), global_step
)
[docs]class WeightsHistHandler(BaseWeightsHistHandler):
"""Helper handler to log model's weights as histograms.
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the trainer to log model's weights norm after each iteration
tb_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model)
)
Args:
model (torch.nn.Module): model to log weights
tag (str, optional): common title for all produced plots. For example, "generator"
"""
def __init__(self, model, tag=None):
super(WeightsHistHandler, self).__init__(model, tag=tag)
def __call__(self, engine, logger, event_name):
if not isinstance(logger, TensorboardLogger):
raise RuntimeError("Handler 'WeightsHistHandler' works only with TensorboardLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = "{}/".format(self.tag) if self.tag else ""
for name, p in self.model.named_parameters():
if p.grad is None:
continue
name = name.replace(".", "/")
logger.writer.add_histogram(
tag="{}weights/{}".format(tag_prefix, name),
values=p.data.detach().cpu().numpy(),
global_step=global_step,
)
[docs]class GradsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's gradients as scalars.
Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter
produce a scalar and then logs the scalar.
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the trainer to log model's weights norm after each iteration
tb_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, reduction=torch.norm)
)
Args:
model (torch.nn.Module): model to log weights
reduction (callable): function to reduce parameters into scalar
tag (str, optional): common title for all produced plots. For example, "generator"
"""
def __init__(self, model, reduction=torch.norm, tag=None):
super(GradsScalarHandler, self).__init__(model, reduction, tag=tag)
def __call__(self, engine, logger, event_name):
if not isinstance(logger, TensorboardLogger):
raise RuntimeError("Handler 'GradsScalarHandler' works only with TensorboardLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = "{}/".format(self.tag) if self.tag else ""
for name, p in self.model.named_parameters():
if p.grad is None:
continue
name = name.replace(".", "/")
logger.writer.add_scalar(
"{}grads_{}/{}".format(tag_prefix, self.reduction.__name__, name), self.reduction(p.grad), global_step
)
[docs]class GradsHistHandler(BaseWeightsHistHandler):
"""Helper handler to log model's gradients as histograms.
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the trainer to log model's weights norm after each iteration
tb_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model)
)
Args:
model (torch.nn.Module): model to log weights
tag (str, optional): common title for all produced plots. For example, "generator"
"""
def __init__(self, model, tag=None):
super(GradsHistHandler, self).__init__(model, tag=tag)
def __call__(self, engine, logger, event_name):
if not isinstance(logger, TensorboardLogger):
raise RuntimeError("Handler 'GradsHistHandler' works only with TensorboardLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = "{}/".format(self.tag) if self.tag else ""
for name, p in self.model.named_parameters():
if p.grad is None:
continue
name = name.replace(".", "/")
logger.writer.add_histogram(
tag="{}grads/{}".format(tag_prefix, name), values=p.grad.detach().cpu().numpy(), global_step=global_step
)
[docs]class TensorboardLogger(BaseLogger):
"""
TensorBoard handler to log metrics, model/optimizer parameters, gradients during the training and validation.
By default, this class favors `tensorboardX <https://github.com/lanpa/tensorboardX>`_ package if installed:
.. code-block:: bash
pip install tensorboardX
otherwise, it falls back to using
`PyTorch's SummaryWriter
<https://pytorch.org/docs/stable/tensorboard.html>`_
(>=v1.2.0).
Args:
*args: Positional arguments accepted from
`SummaryWriter
<https://pytorch.org/docs/stable/tensorboard.html>`_.
**kwargs: Keyword arguments accepted from
`SummaryWriter
<https://pytorch.org/docs/stable/tensorboard.html>`_.
For example, `log_dir` to setup path to the directory where to log.
Examples:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
# Create a logger
tb_logger = TensorboardLogger(log_dir="experiments/tb_logs")
# Attach the logger to the trainer to log training loss at each iteration
tb_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {"loss": loss}
)
# Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
# We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer` instead of `train_evaluator`.
tb_logger.attach_output_handler(
train_evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="training",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer),
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
# `trainer` instead of `evaluator`.
tb_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)),
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
tb_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer,
param_name='lr' # optional
)
# Attach the logger to the trainer to log model's weights norm after each iteration
tb_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model)
)
# Attach the logger to the trainer to log model's weights as a histogram after each epoch
tb_logger.attach(
trainer,
event_name=Events.EPOCH_COMPLETED,
log_handler=WeightsHistHandler(model)
)
# Attach the logger to the trainer to log model's gradients norm after each iteration
tb_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model)
)
# Attach the logger to the trainer to log model's gradients as a histogram after each epoch
tb_logger.attach(
trainer,
event_name=Events.EPOCH_COMPLETED,
log_handler=GradsHistHandler(model)
)
# We need to close the logger with we are done
tb_logger.close()
It is also possible to use the logger as context manager:
.. code-block:: python
from ignite.contrib.handlers.tensorboard_logger import *
with TensorboardLogger(log_dir="experiments/tb_logs") as tb_logger:
trainer = Engine(update_fn)
# Attach the logger to the trainer to log training loss at each iteration
tb_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {"loss": loss}
)
"""
def __init__(self, *args, **kwargs):
try:
from tensorboardX import SummaryWriter
except ImportError:
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
raise RuntimeError(
"This contrib module requires either tensorboardX or torch >= 1.2.0. "
"You may install tensorboardX with command: \n pip install tensorboardX \n"
"or upgrade PyTorch using your package manager of choice (pip or conda)."
)
self.writer = SummaryWriter(*args, **kwargs)
def close(self):
self.writer.close()
def _create_output_handler(self, *args, **kwargs):
return OutputHandler(*args, **kwargs)
def _create_opt_params_handler(self, *args, **kwargs):
return OptimizerParamsHandler(*args, **kwargs)