tqdm_logger#
TQDM logger.
Classes
TQDM progress bar handler to log training progress and computed metrics. |
- class ignite.contrib.handlers.tqdm_logger.ProgressBar(persist=False, bar_format='{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]', **tqdm_kwargs)[source]#
TQDM progress bar handler to log training progress and computed metrics.
- Parameters
persist (bool) – set to
True
to persist the progress bar after completion (default =False
)bar_format (Optional[str]) – Specify a custom bar string formatting. May impact performance. [default: ‘{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]’]. Set to
None
to usetqdm
default bar formatting: ‘{l_bar}{bar}{r_bar}’, where l_bar=’{desc}: {percentage:3.0f}%|’ and r_bar=’| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]’. For more details on the formatting, see tqdm docs.tqdm_kwargs (Any) – kwargs passed to tqdm progress bar. By default, progress bar description displays “Epoch [5/10]” where 5 is the current epoch and 10 is the number of epochs; however, if
max_epochs
are set to 1, the progress bar instead displays “Iteration: [5/10]”. If tqdm_kwargs defines desc, e.g. “Predictions”, than the description is “Predictions [5/10]” if number of epochs is more than one otherwise it is simply “Predictions”.
Examples
Simple progress bar
trainer = create_supervised_trainer(model, optimizer, loss) pbar = ProgressBar() pbar.attach(trainer) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|█████ [06:17<12:34]
Log output to a file instead of stderr (tqdm’s default output)
trainer = create_supervised_trainer(model, optimizer, loss) log_file = open("output.log", "w") pbar = ProgressBar(file=log_file) pbar.attach(trainer)
Attach metrics that already have been computed at
ITERATION_COMPLETED
(such asRunningAverage
)trainer = create_supervised_trainer(model, optimizer, loss) RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss') pbar = ProgressBar() pbar.attach(trainer, ['loss']) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|█████ , loss=0.123 [06:17<12:34]
Directly attach the engine’s output
trainer = create_supervised_trainer(model, optimizer, loss) pbar = ProgressBar() pbar.attach(trainer, output_transform=lambda x: {'loss': x}) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|█████ , loss=0.123 [06:17<12:34]
Example where the State Attributes
trainer.state.alpha
andtrainer.state.beta
are also logged along with the NLL and Accuracy after each iteration:pbar.attach( trainer, metric_names=["nll", "accuracy"], state_attributes=["alpha", "beta"], )
Note
When attaching the progress bar to an engine, it is recommended that you replace every print operation in the engine’s handlers triggered every iteration with
pbar.log_message
to guarantee the correct format of the stdout.Note
When using inside jupyter notebook, ProgressBar automatically uses tqdm_notebook. For correct rendering, please install ipywidgets. Due to tqdm notebook bugs, bar format may be needed to be set to an empty string value.
Changed in version 0.4.7: attach now accepts an optional list of state_attributes
- attach(engine, metric_names=None, output_transform=None, event_name=Events.ITERATION_COMPLETED, closing_event_name=Events.EPOCH_COMPLETED, state_attributes=None)[source]#
Attaches the progress bar to an engine object.
- Parameters
engine (Engine) – engine object.
metric_names (Optional[Union[str, List[str]]]) – list of metric names to plot or a string “all” to plot all available metrics.
output_transform (Optional[Callable]) – a function to select what you want to print from the engine’s output. This function may return either a dictionary with entries in the format of
{name: value}
, or a single scalar, which will be displayed with the default name output.event_name (Union[Events, CallableEventWithFilter]) – event’s name on which the progress bar advances. Valid events are from
Events
.closing_event_name (Union[Events, CallableEventWithFilter]) – event’s name on which the progress bar is closed. Valid events are from
Events
.state_attributes (Optional[List[str]]) – list of attributes of the
trainer.state
to plot.
- Return type
None
Note
Accepted output value types are numbers, 0d and 1d torch tensors and strings.