Shortcuts

polyaxon_logger#

Polyaxon logger and its helper handlers.

Classes

OptimizerParamsHandler

Helper handler to log optimizer parameters

OutputHandler

Helper handler to log engine's output and/or metrics.

PolyaxonLogger

Polyaxon tracking client handler to log parameters and metrics during the training and validation.

class ignite.contrib.handlers.polyaxon_logger.OptimizerParamsHandler(optimizer, param_name='lr', tag=None)[source]#

Helper handler to log optimizer parameters

Parameters
  • optimizer (Optimizer) – torch optimizer or any object with attribute param_groups as a sequence.

  • param_name (str) – parameter name

  • tag (Optional[str]) – common title for all produced plots. For example, “generator”

Examples

from ignite.contrib.handlers.polyaxon_logger import *

# Create a logger
plx_logger = PolyaxonLogger()

# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
plx_logger.attach(
    trainer,
    log_handler=OptimizerParamsHandler(optimizer),
    event_name=Events.ITERATION_STARTED
)
# or equivalently
plx_logger.attach_opt_params_handler(
    trainer,
    event_name=Events.ITERATION_STARTED,
    optimizer=optimizer
)
class ignite.contrib.handlers.polyaxon_logger.OutputHandler(tag, metric_names=None, output_transform=None, global_step_transform=None, state_attributes=None)[source]#

Helper handler to log engine’s output and/or metrics.

Parameters
  • tag (str) – common title for all produced plots. For example, “training”

  • metric_names (Optional[List[str]]) – list of metric names to plot or a string “all” to plot all available metrics.

  • output_transform (Optional[Callable]) – output transform function to prepare engine.state.output as a number. For example, output_transform = lambda output: output This function can also return a dictionary, e.g {“loss”: loss1, “another_loss”: loss2} to label the plot with corresponding keys.

  • global_step_transform (Optional[Callable[[Engine, Union[str, Events]], int]]) – global step transform function to output a desired global step. Input of the function is (engine, event_name). Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use global_step_from_engine().

  • state_attributes (Optional[List[str]]) – list of attributes of the trainer.state to plot.

Examples

from ignite.contrib.handlers.polyaxon_logger import *

# Create a logger
plx_logger = PolyaxonLogger()

# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer`:
plx_logger.attach(
    evaluator,
    log_handler=OutputHandler(
        tag="validation",
        metric_names=["nll", "accuracy"],
        global_step_transform=global_step_from_engine(trainer)
    ),
    event_name=Events.EPOCH_COMPLETED
)
# or equivalently
plx_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="validation",
    metric_names=["nll", "accuracy"],
    global_step_transform=global_step_from_engine(trainer)
)

Another example, where model is evaluated every 500 iterations:

from ignite.contrib.handlers.polyaxon_logger import *

@trainer.on(Events.ITERATION_COMPLETED(every=500))
def evaluate(engine):
    evaluator.run(validation_set, max_epochs=1)

plx_logger = PolyaxonLogger()

def global_step_transform(*args, **kwargs):
    return trainer.state.iteration

# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# every 500 iterations. Since evaluator engine does not have access to the training iteration, we
# provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
# evaluator metrics are plotted on Polyaxon.

plx_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="validation",
    metrics=["nll", "accuracy"],
    global_step_transform=global_step_transform
)

Another example where the State Attributes trainer.state.alpha and trainer.state.beta are also logged along with the NLL and Accuracy after each iteration:

plx_logger.attach_output_handler(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    tag="training",
    metrics=["nll", "accuracy"],
    state_attributes=["alpha", "beta"],
)

Example of global_step_transform:

def global_step_transform(engine, event_name):
    return engine.state.get_event_attrib_value(event_name)

Changed in version 0.4.7: accepts an optional list of state_attributes

class ignite.contrib.handlers.polyaxon_logger.PolyaxonLogger(*args, **kwargs)[source]#

Polyaxon tracking client handler to log parameters and metrics during the training and validation.

This class requires polyaxon package to be installed:

pip install polyaxon

// If you are using polyaxon v0.x

pip install polyaxon-client
Parameters

Examples

from ignite.contrib.handlers.polyaxon_logger import *

# Create a logger
plx_logger = PolyaxonLogger()

# Log experiment parameters:
plx_logger.log_inputs(**{
    "seed": seed,
    "batch_size": batch_size,
    "model": model.__class__.__name__,

    "pytorch version": torch.__version__,
    "ignite version": ignite.__version__,
    "cuda version": torch.version.cuda,
    "device name": torch.cuda.get_device_name(0)
})

# Attach the logger to the trainer to log training loss at each iteration
plx_logger.attach_output_handler(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    tag="training",
    output_transform=lambda loss: {"loss": loss}
)

# Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
# We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer` instead of `train_evaluator`.
plx_logger.attach_output_handler(
    train_evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="training",
    metric_names=["nll", "accuracy"],
    global_step_transform=global_step_from_engine(trainer),
)

# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
# `trainer` instead of `evaluator`.
plx_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="validation",
    metric_names=["nll", "accuracy"],
    global_step_transform=global_step_from_engine(trainer)),
)

# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
plx_logger.attach_opt_params_handler(
    trainer,
    event_name=Events.ITERATION_STARTED,
    optimizer=optimizer,
    param_name='lr'  # optional
)
# to manually end a run
plx_logger.close()
ignite.contrib.handlers.polyaxon_logger.global_step_from_engine(engine, custom_event_name=None)[source]#

Helper method to setup global_step_transform function using another engine. This can be helpful for logging trainer epoch/iteration while output handler is attached to an evaluator.

Parameters
  • engine (Engine) – engine which state is used to provide the global step

  • custom_event_name (Optional[Events]) – registered event name. Optional argument, event name to use.

Returns

global step based on provided engine

Return type

Callable