[docs]classVariableAccumulation(Metric):"""Single variable accumulator helper to compute (arithmetic, geometric, harmonic) average of a single variable. - ``update`` must receive output of the form `x`. - `x` can be a number or `torch.Tensor`. Note: The class stores input into two public variables: `accumulator` and `num_examples`. Number of samples is updated following the rule: - `+1` if input is a number - `+1` if input is a 1D `torch.Tensor` - `+batch_size` if input is a ND `torch.Tensor`. Batch size is the first dimension (`shape[0]`). Args: op: a callable to update accumulator. Method's signature is `(accumulator, output)`. For example, to compute arithmetic mean value, `op = lambda a, x: a + x`. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. """required_output_keys=Nonedef__init__(self,op:Callable,output_transform:Callable=lambdax:x,device:Union[str,torch.device]=torch.device("cpu"),):ifnotcallable(op):raiseTypeError(f"Argument op should be a callable, but given {type(op)}")self._op=opsuper(VariableAccumulation,self).__init__(output_transform=output_transform,device=device)
def_check_output_type(self,output:Union[float,torch.Tensor])->None:ifnotisinstance(output,(numbers.Number,torch.Tensor)):raiseTypeError(f"Output should be a number or torch.Tensor, but given {type(output)}")
[docs]classAverage(VariableAccumulation):"""Helper class to compute arithmetic average of a single variable. - ``update`` must receive output of the form `x`. - `x` can be a number or `torch.Tensor`. Note: Number of samples is updated following the rule: - `+1` if input is a number - `+1` if input is a 1D `torch.Tensor` - `+batch_size` if input is an ND `torch.Tensor`. Batch size is the first dimension (`shape[0]`). For input `x` being an ND `torch.Tensor` with N > 1, the first dimension is seen as the number of samples and is summed up and added to the accumulator: `accumulator += x.sum(dim=0)` ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = Average() metric.attach(default_evaluator, 'avg') # Case 1. input is er data = torch.tensor([0, 1, 2, 3, 4]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: 2.0 .. testcode:: metric = Average() metric.attach(default_evaluator, 'avg') # Case 2. input is a 1D torch.Tensor data = torch.tensor([ [0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3] ]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([1.5000, 1.5000, 1.5000], dtype=torch.float64) .. testcode:: metric = Average() metric.attach(default_evaluator, 'avg') # Case 3. input is a ND torch.Tensor data = [ torch.tensor([[0, 0, 0], [1, 1, 1]]), torch.tensor([[2, 2, 2], [3, 3, 3]]) ] state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([1.5000, 1.5000, 1.5000], dtype=torch.float64) """def__init__(self,output_transform:Callable=lambdax:x,device:Union[str,torch.device]=torch.device("cpu")):def_mean_op(a:Union[float,torch.Tensor],x:Union[float,torch.Tensor])->Union[float,torch.Tensor]:ifisinstance(x,torch.Tensor)andx.ndim>1:x=x.sum(dim=0)returna+xsuper(Average,self).__init__(op=_mean_op,output_transform=output_transform,device=device)
[docs]@sync_all_reduce("accumulator","num_examples")defcompute(self)->Union[float,torch.Tensor]:ifself.num_examples<1:raiseNotComputableError(f"{self.__class__.__name__} must have at least one example before it can be computed.")returnself.accumulator/self.num_examples
[docs]classGeometricAverage(VariableAccumulation):"""Helper class to compute geometric average of a single variable. - ``update`` must receive output of the form `x`. - `x` can be a positive number or a positive `torch.Tensor`, such that ``torch.log(x)`` is not `nan`. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. Note: Number of samples is updated following the rule: - `+1` if input is a number - `+1` if input is a 1D `torch.Tensor` - `+batch_size` if input is a ND `torch.Tensor`. Batch size is the first dimension (`shape[0]`). For input `x` being an ND `torch.Tensor` with N > 1, the first dimension is seen as the number of samples and is aggregated and added to the accumulator: `accumulator *= prod(x, dim=0)` ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. Examples: For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = GeometricAverage() metric.attach(default_evaluator, 'avg') # Case 1. input is er data = torch.tensor([1, 2, 3]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: 1.8171... .. testcode:: metric = GeometricAverage() metric.attach(default_evaluator, 'avg') # Case 2. input is a 1D torch.Tensor data = torch.tensor([ [1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], ]) state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([2.2134, 2.2134, 2.2134], dtype=torch.float64) .. testcode:: metric = GeometricAverage() metric.attach(default_evaluator, 'avg') # Case 3. input is a ND torch.Tensor data = [ torch.tensor([[1, 1, 1], [2, 2, 2]]), torch.tensor([[3, 3, 3], [4, 4, 4]]) ] state = default_evaluator.run(data) print(state.metrics['avg']) .. testoutput:: tensor([2.2134, 2.2134, 2.2134], dtype=torch.float64) """def__init__(self,output_transform:Callable=lambdax:x,device:Union[str,torch.device]=torch.device("cpu")):def_geom_op(a:torch.Tensor,x:Union[float,torch.Tensor])->torch.Tensor:ifnotisinstance(x,torch.Tensor):x=torch.tensor(x)x=torch.log(x)ifx.ndim>1:x=x.sum(dim=0)returna+xsuper(GeometricAverage,self).__init__(op=_geom_op,output_transform=output_transform,device=device)
[docs]@sync_all_reduce("accumulator","num_examples")defcompute(self)->Union[float,torch.Tensor]:ifself.num_examples<1:raiseNotComputableError(f"{self.__class__.__name__} must have at least one example before it can be computed.")tensor=torch.exp(self.accumulator/self.num_examples)iftensor.numel()==1:returntensor.item()returntensor